1887

Abstract

This study had two objectives: to determine the number of (phenotypic) ciliate species co-existing in 1 m of sandy river sediment at a maximum temperature of 4 °C; and to determine the ecological mechanism(s) facilitating their co-existence. The ciliate community was diverse (65 species [8 of which are new], belonging to 50 genera, from 17 orders). The sediment supported a superficial mat of diatoms (> 30 species). These served as food for at least 16 ciliate species. The size frequency distribution of ingested diatoms was almost identical to that for the diatoms in the sediment: thus the probability of a diatom being ingested appears to be a simple function of its relative abundance. Two factors were probably important for the co-existence of ciliate species: wide variation in cell size and shape enabled them to occupy most habitats; and they deployed a variety of feeding mechanisms to consume the variety of microbial food types. Taken as a whole, the ciliate community was capable of feeding on all microbes, including other protozoa, up to a size of about 80 μm. Considering the broad diversity of ciliate habitats available within 1 m, the importance of physical transport processes in the river basin, and the known cosmopolitan distribution of many ciliate species, it is believed likely that the species richness we recorded is representative of the expanse of sandy sediment in this river, on this occasion.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-11-2855
1993-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/11/mic-139-11-2855.html?itemId=/content/journal/micro/10.1099/00221287-139-11-2855&mimeType=html&fmt=ahah

References

  1. Baroin-Tourancheau A., Delgado P., Perasso R., Adoutte A. 1992; A broad molecular phylogeny of ciliates: identification of major evolutionary trends and radiations within the phylum. Proceedings of the National Academy of Sciences of the United States of America 899764–9768
    [Google Scholar]
  2. Berninger U.-G., Caron D. A., Sanders R. W., Finlay B. J. 1991; Heterotrophic flagellates of planktonic communities, their characteristics and methods of study. In The Biology of Free-Living Heterotrophic Flagellates pp. 39–56 Patterson D. J., Larsen J. Edited by Oxford: Clarendon Press;
    [Google Scholar]
  3. Bick H. 1973; Population dynamics of protozoa associated with the decay of organic materials in fresh water. American Zoologist 13:149–160
    [Google Scholar]
  4. Chapin F. S., Schulze E.-D., Mooney H. A. 1992; Biodiversity and ecosystem processes. Trends in Ecology and Evolution 7:107–108
    [Google Scholar]
  5. Curds C. R. 1982 British and Other Freshwater Ciliated Protozoa. Part 1. Ciliophora: Kinetofragminophora London: Cambridge University Press;
    [Google Scholar]
  6. Curds C. R., Gates M. A., Roberts D. MCL. 1983 British and Other Freshwater Ciliated Protozoa. Part 2. Ciliophora: Oligohymenophora and Polyhymenophora Cambridge: Cambridge University Press;
    [Google Scholar]
  7. Curds C. R., Bamforth S. S., Finlay B. J. 1986; Report on the freshwater workshop in Kisumu, Kenya. 30June5July 1985 Insect Science and its Applications 7:447–449
    [Google Scholar]
  8. Dragesco J., Dragesco-Kernéis A. 1986 Ciliés Libres de l’Afrique Intertropicale Paris: ORSTOM;
    [Google Scholar]
  9. Embley T. M., Finlay B. J., Thomas R. H., Dyal P. L. 1992; The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont. Journal of General Microbiology 138:1479–1487
    [Google Scholar]
  10. Esteban G., Guhl B. E., Clarke K. J., Embley T. M., Finlay B. J. 1993a; Cyclidium porcatum n. sp.: a free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. European Journal of Protistology 29:262–270
    [Google Scholar]
  11. Esteban G., Finlay B. J., Embley T. M. 1993b; New species double the diversity of anaerobic ciliates in a Spanish lake. FEMS Microbiology Letters 109:93–100
    [Google Scholar]
  12. Fenchel T. 1968; The ecology of marine microbenthos. II. The food of marine benthic ciliates. Ophelia 5:73–121
    [Google Scholar]
  13. Fenchel T. 1969; The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia 6:1–182
    [Google Scholar]
  14. Fenchel T. 1986; Protozoan filter feeding. Progress in Protistology 1:65–113
    [Google Scholar]
  15. Fenchel T. 1987 Ecology of Protozoa Madison: Science Tech Publishers; Berlin: Springer-Verlag;
    [Google Scholar]
  16. Fenchel T. 1990; Adaptive significance of polymorphic life cycles in protozoa: responses to starvation and refeeding in two species of marine ciliates. Journal of Experimental Marine Biology and Ecology 136:159–177
    [Google Scholar]
  17. Fenchel T., Finlay B. J. 1990; Anaerobic free-living protozoa: growth efficiencies and the structure of anaerobic communities. FEMS Microbiology Ecology 74:269–276
    [Google Scholar]
  18. Fernández-Galiano D. 1976; Silver impregnation of ciliated protozoa: procedure yielding good results with the pyridinated silver carbonate method. Transactions of the American Microscopical Society 95:557–560
    [Google Scholar]
  19. Finlay B. J. 1980; Temporal and vertical distribution of ciliophoran communities in the benthos of a small eutrophic loch with particular reference to the redox profile. Freshwater Biology 10:15–34
    [Google Scholar]
  20. Finlay B. J. 1990; Physiological ecology of free-living protozoa. Advances in Microbial Ecology 11:1–35
    [Google Scholar]
  21. Finlay B. J., Berninger U.-G. 1983; Coexistence of congeneric ciliates (Karyorelictida: Loxodes) in relation to food resources in two freshwater lakes. Journal of Animal Ecology 53:929–943
    [Google Scholar]
  22. Finlay B. J., Embley T. M. 1992; On protozoan consortia and the meaning of biodiversity. Society for General Microbiology Quarterly 19(3):67–69
    [Google Scholar]
  23. Finlay B. J., Bannister P., Stewart J. 1979a; Temporal variation in benthic ciliates and the application of association analysis. Freshwater Biology 9:45–53
    [Google Scholar]
  24. Finlay B. J., Laybourn J., Strachan I. 1979b; A technique for the enumeration of benthic ciliated protozoa. Oecologia 39:375–377
    [Google Scholar]
  25. Finlay B. J., Curds C. R., Bamforth S. S., Bafort J. M. 1987; Ciliated protozoa and other microorganisms from two African soda lakes (Lake Nakuru and Lake Simbi, Kenya). Archiv für Protistenkmde 133:81–91
    [Google Scholar]
  26. Finlay B. J., Berninger U.-G., Clarke K. J., Cowling A. J., Hindle R. M., Rogerson A. R. 1988; On the abundance and distribution of protozoa and their food in a productive freshwater pond. European Journal of Protistology 23:205–217
    [Google Scholar]
  27. Foissner W. 1980; Artenbestand und Struktur der Ciliatenzönose in alpinen Kleingewässern (Hohe Tauem, Österreich). Archiv für Protistenkunde 123:99–126
    [Google Scholar]
  28. Foissner W., Blatterer H., Berger H., Kohmann F. 1991 Taxonomische und ökologische Revision der Ciliaten des Saprobien-systems. I: Cyrtophorida, Oligotrichida, Hypotrichia, Colpodea Munich: Bayer; Landesamtes für Wasserwirtschaft
    [Google Scholar]
  29. Foissner W., Unterweger A., Henschel T. 1992; Comparison of direct stream bed and artificial substrate sampling of ciliates (Protozoan, Ciliophora) in a mesosaprobic river. Limnologica 22:97–104
    [Google Scholar]
  30. Grabacka E. 1971; Ciliata in bottom sediments of fingerling ponds. Polish Archives of Hydrobiology 18:225–233
    [Google Scholar]
  31. Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. 1990; Genetic diversity in Sargasso Sea bacterioplankton. Nature; London: 34560–62
    [Google Scholar]
  32. Gray E. 1952; The ecology of the ciliate fauna of Hobson’s Brook, a Cambridgeshire chalk stream. Journal of General Microbiology 6:108–122
    [Google Scholar]
  33. Kahl A. 1930–1935; Urtiere oder Protozoa. I. In Die Tierwelt Deutschlands pp. 1–886 Dahl F. Edited by Jena: G. Fischer;
    [Google Scholar]
  34. Linage A. 1989 Sepúlveda y el Cañón del Duratón pp. 159 León (Spain): Ediciones Lancia;
    [Google Scholar]
  35. Nanney D. L. 1982; Genes and phenes in Tetrahymena. Bioscience 32:783–788
    [Google Scholar]
  36. Pedrós-Alió C. 1993; Diversity of bacterioplankton. Trends in Ecology and Evolution 8:86–90
    [Google Scholar]
  37. Picken L. R. 1937; The structure of some protozoan communities. Journal of Ecology 25:368–384
    [Google Scholar]
  38. Small E. B. 1973; A study of ciliate protozoa from a small polluted stream in east-central Illinois. American Zoologist 13:225–230
    [Google Scholar]
  39. Small E. B., Lynn D. H. 1985; Phylum Ciliophora Doflein, 1901. In An Illustrated Guide to the Protozoa pp. 393–575 Lee J. J., Hutner S. H., Bovee E. C. Edited by Lawrence, Kansas: Society of Protozoologists;
    [Google Scholar]
  40. Song W., Wilbert N. 1989; Taxonomische Untersuchungen an Aufwuchsciliaten (Protozoa, Ciliophora) im Poppelsdorfer Weiher, Bonn. Lauterbornia 3:2–221
    [Google Scholar]
  41. Wang C. C. 1928; Ecological studies of the seasonal distribution of protozoa in a fresh-water pond. Journal of Morphology 46:431–478
    [Google Scholar]
  42. Webb M. G. 1961; The effects of thermal stratification on the distribution of benthic protozoa in Esthwaite Water. Journal of Animal Ecology 30:137–151
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-11-2855
Loading
/content/journal/micro/10.1099/00221287-139-11-2855
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error