1887

Abstract

Maedi-visna virus (MVV) is a lentivirus of sheep, mainly affecting the lungs and the central nervous system. Long terminal repeat (LTR) sequence variability is common in tissue culture-derived isolates of MVV as well as those of other lentiviruses. The role of this sequence variation in MVV replication has not been explored. PCR amplification of the LTRs of an MVV isolate revealed two product sizes, the larger containing a 53 bp duplication. PCR products containing the two size variants of the LTRs were cloned into an infectious molecular clone of MVV and the resulting chimeric viruses were tested for growth in various cell types. The chimeric virus containing only one copy of the 53 bp sequence was found to grow more slowly in sheep choroid plexus cells, sheep fibroblasts and sheep synovial cells than the virus with the 53 bp duplication. Both viruses grew equally well in macrophages. These results indicate that the LTRs determined the extended cell tropism of MVV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-8-1901
2000-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/8/0811901a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-8-1901&mimeType=html&fmt=ahah

References

  1. Andrésdóttir V., Tang X., Agnarsdóttir G., Andrésson Ó. S., Georgsson G., Skraban R., Torsteinsdóttir S., Rafnar B., Benediktsdóttir E., Matthíasdóttir S., árnadóttir S., Högnadóttir S., Pálsson P. A., Pétursson G. 1998; Biological and genetic differences between lung- and brain-derived isolates of maedi-visna virus. Virus Genes 16:281–293
    [Google Scholar]
  2. Andrésson Ó. S., Elser J. E., Tobin G. J., Greenwood J. D., Gonda M. A., Georgsson G., Andrésdóttir V., Benediktsdóttir E., Carlsdóttir H. M., Mäntylä E. O., Rafnar B., Pálsson P. A., Casey J. W., Pétursson G. 1993; Nucleotide sequence and biological properties of a pathogenic proviral molecular clone of neurovirulent visna virus. Virology 193:89–105
    [Google Scholar]
  3. Andrésson Ó. S., Elser J. E., Georgsson G., Tobin G. J., Greenwood J. D., Gonda M. A., Andrésdóttir V., Pálsson P. A., Pétursson G. 1994; Pathogenic proviral molecular clone of neurovirulent visna virus. Annals of the New York Academy of Sciences 724:133–139
    [Google Scholar]
  4. Bandyopadhyay P. K., Watanabe S., Temin H. M. 1984; Recombination of transfected DNAs in vertebrate cells in culture. Proceedings of the National Academy of Sciences USA: 81:3476–3480
    [Google Scholar]
  5. Braun M. J., Clements J. E., Gonda M. A. 1987; The visna virus genome: evidence for a hypervariable site in the env gene and sequence homology among lentivirus envelope proteins. Journal of Virology 61:4046–4054
    [Google Scholar]
  6. Brodie S. J., Pearson L. D., Zink M. C., Bickle H. M., Anderson B. C., Marcom K. A., DeMartini J. C. 1995; Ovine lentivirus expression and disease. Virus replication, but not entry, is restricted to macrophages of specific tissues. American Journal of Pathology 146:250–263
    [Google Scholar]
  7. Canonne-Hergaux F., Aunis D., Schaeffer E. 1995; Interactions of the transcription factor AP-1 with the long terminal repeat of different human immunodeficiency virus type 1 strains in Jurkat, glial, and neuronal cells. Journal of Virology 69:6634–6642
    [Google Scholar]
  8. Corboy J. R., Buzy J. M., Zink M. C., Clements J. E. 1992; Expression directed from HIV long terminal repeats in the central nervous system of transgenic mice. Science 258:1804–1808
    [Google Scholar]
  9. Deng H. K., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Di Marzio P., Marmon S., Sutton R. E., Hill C. M., Davis C. B., Peiper S. C., Schall T. J., Littman D. R., Landau N. R. 1996; Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666
    [Google Scholar]
  10. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. 1996; HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877
    [Google Scholar]
  11. Gabuzda D. H., Hess J. L., Small J. A., Clements J. E. 1989; Regulation of the visna virus long terminal repeat in macrophages involves cellular factors that bind sequences containing AP-1 sites. Molecular and Cellular Biology 9:2728–2733
    [Google Scholar]
  12. Gendelman H. E., Narayan O., Kennedy-Stoskopf S., Kennedy P. G. E., Ghotbi Z., Clements J. E., Stanley J., Pezeshkpour G. 1986; Tropism of sheep lentiviruses for monocytes: susceptibility to infection and virus gene expression increase during maturation of monocytes to macrophages. Journal of Virology 58:67–74
    [Google Scholar]
  13. Georgsson G. 1990; Maedi-visna: pathology and pathogenesis. In Maedi-Visna and Related Diseases pp 19–54 Edited by Pétursson G., Hoff-Jörgensen R. Boston: Kluwer;
    [Google Scholar]
  14. Georgsson G., Houwers D. J., Pálsson P. A., Pétursson G. 1989; Expression of viral antigens in the central nervous system of visna-infected sheep: an immunohistochemical study on experimental visna induced by virus strains of increased neurovirulence. Acta Neuropathologica 77:299–306
    [Google Scholar]
  15. Gorrell M. D., Brandon M. R., Sheffer D., Adams R. J., Narayan O. 1992; Ovine lentivirus is macrophagetropic and does not replicate productively in T lymphocytes. Journal of Virology 66:2679–2688
    [Google Scholar]
  16. Hess J. L., Small J. A., Clements J. E. 1989; Sequences in the visna virus long terminal repeat that control transcriptional activity and respond to viral transactivation: involvement of AP-1 sites in basal activity and transactivation. Journal of Virology 63:3001–3010
    [Google Scholar]
  17. Hirt B. 1967; Selective extraction of polyoma DNA from infected mouse cell cultures. Journal of Molecular Biology 26:365–369
    [Google Scholar]
  18. Narayan O., Wolinsky J. S., Clements J. E., Strandberg J. D., Griffin D. E., Cork L. C. 1982; Slow virus replication: the role of macrophages in the persistence and expression of visna viruses in sheep and goats. Journal of General Virology 59:345–356
    [Google Scholar]
  19. Payne S. L., La Celle K., Pei X.-F., Qi X.-M., Shao H., Steagall W. K., Perry S., Fuller F. 1999; Long terminal repeat sequences of equine infectious anaemia virus are a major determinant of cell tropism. Journal of General Virology 80:755–759
    [Google Scholar]
  20. Poeschla E. M., Wong-Staal F., Looney D. J. 1998; Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nature Medicine 4:354–357
    [Google Scholar]
  21. Portis J. L., Lynch W. P. 1998; Dissecting the determinants of neuropathogenesis of the murine oncornaviruses. Virology 247:127–136
    [Google Scholar]
  22. Querat G., Barban V., Sauze N., Filippi P., Vigne R., Russo P., Vitu C. 1984; Highly lytic and persistent lentiviruses naturally present in sheep with progressive pneumonia are genetically distinct. Journal of Virology 52:672–679
    [Google Scholar]
  23. Shimomoto K., Temin H. M. 1982; Spontaneous variation and synthesis in the U3 region of the long terminal repeat of an avian retrovirus. Journal of Virology 41:163–171
    [Google Scholar]
  24. Sigurdsson B. 1954; Observations on three slow infections of sheep. British Veterinary Journal 110:225–270
    [Google Scholar]
  25. Sigurdsson B., Thormar H., Palsson P. A. 1960; Cultivation of visna virus in tissue culture. Archiv für die Gesamte Virusforschung 10:368–380
    [Google Scholar]
  26. Skraban R., Matthíasdóttir S., Torsteinsdóttir S., Agnarsdóttir G., Gudmundsson B., Georgsson G., Meloen R. H., Andrésson ó. S., Staskus K. A., Thormar H., Andrésdóttir V. 1999; Naturally occurring mutations within 39 amino acids in the envelope glycoprotein of maedi-visna virus alter the neutralization phenotype. Journal of Virology 73:8064–8072
    [Google Scholar]
  27. Sonigo P., Alizon M., Staskus K., Klatzmann D., Cole S., Danos O., Retzel E., Tiollais P., Haase A., Wain-Hobson S. 1985; Nucleotide sequence of the visna lentivirus: relationship to the AIDS virus. Cell 42:369–382
    [Google Scholar]
  28. Staskus K. A., Couch L., Bitterman P., Retzel E. F., Zupancic M., List J., Haase A. T. 1991; In situ amplification of visna virus DNA in tissue sections reveals a reservoir of latently infected cells. Microbial Pathogenesis 11:67–76
    [Google Scholar]
  29. Stowring L., Haase A. T., Pétursson G., Georgsson G., Pálsson P., Lutley R., Roos R., Szuchet S. 1985; Detection of visna virus antigens and RNA in glial cells in foci of demyelination. Virology 141:311–318
    [Google Scholar]
  30. Sutton K. A., Lin C.-T., Harkiss G. D., McConnell I., Sargan D. R. 1997; Regulation of the long terminal repeat in visna virus by a transcription factor related to the AML/PEBP2/CBF superfamily. Virology 229:240–250
    [Google Scholar]
  31. Thormar H. 1965; A comparison of visna and maedi viruses. I. Physical, chemical and biological properties. Research in Veterinary Science 6:117–128
    [Google Scholar]
  32. Torsteinsdóttir S., Agnarsdóttir G., Matthiasdóttir S., Rafnar B., Andrésdóttir V., Andrésson O. S., Staskus K., Pétursson G., Pálsson P. A., Georgsson G. 1997; In vivo and in vitro infection with two different molecular clones of visna virus. Virology 229:370–380
    [Google Scholar]
  33. Turelli P., Pétursson G., Guiguen F., Mornex J.-F., Vigne R., Querat G. 1996; Replication properties of dUTPase-deficient mutants of caprine and ovine lentiviruses. Journal of Virology 70:1213–1217
    [Google Scholar]
  34. Twigg A. J., Sherratt D. 1980; Trans-complementable copy-number mutants of plasmid ColE1. Nature 283:216–218
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-8-1901
Loading
/content/journal/jgv/10.1099/0022-1317-81-8-1901
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error