1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-4-699
1997-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/4/9129643.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-4-699&mimeType=html&fmt=ahah

References

  1. Allaire M., Cheraia M. M., Malcolm B. A., James M. N. G. 1994; Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369:72–76
    [Google Scholar]
  2. Allison R., Johnston R. E., Dougherty W. G. 1986; The nucleotide sequence of the coding region of tobacco etch virus genomic RNA : evidence for synthesis of a single polyprotein. Virology 154:9–20
    [Google Scholar]
  3. Andino R., Rieckhof G. E., Trono D., Baltimore D. 1990a; Substitutions in the protease (3Cpro) gene of poliovirus can suppress a mutation in the 5′ noncoding region. Journal of Virology 64:607–612
    [Google Scholar]
  4. Andino R., Rieckhof G. E., Baltimore D. 1990b; A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell 63:369–380
    [Google Scholar]
  5. Andino R., Rieckhof G. E., Achacoso P. L., Baltimore D. 1993; Poliovirus RNA synthesis utilizes an RNP complex formed around the 5′- end of viral RNA. EMBO Journal 12:3587–3598
    [Google Scholar]
  6. Argos P., Kamer G., Nicklin M. J. H., Wimmer E. 1984; Similarity between gene organisation and homology between proteins of animal picornaviruses and a plant comovirus suggest common ancestry of these virus families. Nucleic Acids Research 12:7251–7267
    [Google Scholar]
  7. Batson S., Rundell K. 1991; Proteolysis at the 2A/2B Junction in Theiler's murine encephalomyelitis virus. Virology 181:764–767
    [Google Scholar]
  8. Baum E. Z., Bebernitz G. A., Palant O., Mueller T., Plotch S. J. 1991; Purification, properties and mutagenesis of poliovirus 3C protease. Virology 185:140–150
    [Google Scholar]
  9. Bazan J. F., Fletterick R. J. 1988; Viral cysteine proteases are homologous to the trypsin-like serine proteases : structural and functional implications. Proceedings of the National Academy of Sciences USA: 857872–7876
    [Google Scholar]
  10. Bazan J. F., Fletterick R. J. 1990; Structural and catalytic models of trypsin-like viral proteases. Seminars in Virology 1:311–322
    [Google Scholar]
  11. Belsham G. J., Sonenberg N. 1996; RNA-protein interactions in regulation of picornavirus RNA translation. Microbiological Reviews 60:499–511
    [Google Scholar]
  12. Bernstein H. D., Sonenberg N., Baltimore D. 1985; Poliovirus mutant that does not selectively inhibit host cell protein synthesis. Molecular and Cellular Biology 5:2913–2923
    [Google Scholar]
  13. Bernstein H. D., Sarnow P., Baltimore D. 1986; Genetic complementation among poliovirus mutants derived from an infectious cDNA clone. Journal of Virology 60:1040–1049
    [Google Scholar]
  14. Burroughs J. N., Sangar D. V., Clarke B. E., Rowlands D. J., Billiau A., Collen D. 1984; Multiple proteases in foot-and-mouth disease virus replication. Journal of Virology 50:878–883
    [Google Scholar]
  15. Cao X., Bergman I. E., Fullkrieg R., Beck E. 1995; Functional analysis of the two alternative initiation sites of foot-and-mouth disease virus. Journal of Virology 69:560–563
    [Google Scholar]
  16. Carrington J. C., Dougherty W. G. 1987a; Small nuclear inclusion protein encoded by a plant potyvirus genome is a proteinase. Journal of Virology 61:2540–2548
    [Google Scholar]
  17. Carrington J. C., Dougherty W. G. 1987b; Processing of the tobacco etch virus 49K protease requires autoproteolysis. Virology 160:355–362
    [Google Scholar]
  18. Carrington J. C., Dougherty W. G. 1988; A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proceedings of the National Academy of Sciences USA: 853391–3395
    [Google Scholar]
  19. Carrington J. C., Cary S. M., Dougherty W. G. 1988; Mutational analysis of tobacco etch virus polyprotein processing: cis and trans proteolytic activities of polyproteins containing the 49-kilodalton proteinase. Journal of Virology 62:2313–2320
    [Google Scholar]
  20. Carrington J. C., Cary S. M., Parks T. D., Dougherty W. G. 1989a; A second proteinase encoded by a plant potyvirus genome. EMBO Journal 8:365–370
    [Google Scholar]
  21. Carrington J. C., Freed D. D., Sanders T. C. 1989b; Autocatalytic processing of the potyvirus helper component proteinase in Escherichia coli and in vitro. Journal of Virology 63:4459–4463
    [Google Scholar]
  22. Carrington J. C., Freed D. D., Oh C. -S. 1990; Expression of potyviral polyproteins in transgenic plants reveals three proteolytic activities required for complete processing. EMBO Journal 9:1347–1353
    [Google Scholar]
  23. Cheah K. -C., Leong L. E. -C., Porter A. G. 1990; Site-directed mutagenesis suggests close functional relationship between human rhinovirus 3C cysteine protease and cellular trypsin-like serine proteases. Journal of Biological Chemistry 265:7180–7187
    [Google Scholar]
  24. Chen X., Bruening G. E. 1992; Cloned DNA copies of cowpea severe mosaic virus genomic RNAs : infectious transcripts and complete nucleotide sequence of RNA 1. Virology 191:607–618
    [Google Scholar]
  25. Choi G. H., Pawlyk D. M., Nuss D. L. 1991; The autocatalytic protease p29 encodedby a hypovirulence-associated virus ofthe chestnut blight fungus resembles the potyvirus-encoded protease HC-Pro. Virology 183:747–752
    [Google Scholar]
  26. Clark M. E., Hammerle T., Wimmer E., Dasgupta A. 1991; Poliovirus proteinase 3C converts an active form of transcription factor IIIC to an inactive form: a mechanism for inhibition of host cell polymerase III transcription by poliovirus. EMBO Journal 10:2941–2947
    [Google Scholar]
  27. Clark M. E., Lieberman P. M., Berk A. J., Dasgupta A. 1993; Direct cleavage of human TATA-binding protein by poliovirus 3C in vivo and in vitro. Molecular and Cellular Biology 13:1232–1237
    [Google Scholar]
  28. Clarke B. E., Sangar D. V. 1988; Processing and assembly of foot- and-mouth disease virus proteins using subgenomic RNA. Journal of General Virology 69:2313–2325
    [Google Scholar]
  29. Clarke B. E., Sangar D. V., Burroughs J. N., Newton S. E., Carroll A. R., Rowlands D. J. 1985; Two initiation sites for foot-and-mouth disease virus polyprotein in vivo . Journal of General Virology 66:2615–2626
    [Google Scholar]
  30. Das S., Dasgupta A. 1993; Identification of the cleavage site and determinants required for poliovirus 3Cpro-catalysed cleavage of human TATA-binding protein transcription factor TBP. Journal of Virology 67:3326–3331
    [Google Scholar]
  31. Davidson A. D., Proels M., Schell J., Steinbiss H. -H. 1991; The nucleotide sequence of RNA 2 of barley yellow mosaic virus. Journal of General Virology 72:989–993
    [Google Scholar]
  32. Dessens J. T., Lomonossoff G. P. 1991; Mutational analysis of the putative catalytic triad of the cowpea mosaic virus 24K protease. Virology 184:738–746
    [Google Scholar]
  33. Dessens J. T., Lomonossoff G. P. 1992; Sequences upstream of the 24K protease enhances cleavage of the cowpea mosaic virus B RNA- encoded polyprotein at the junction between the 24K and 87K proteins. Virology 189:225–232
    [Google Scholar]
  34. Dewalt P. G., Lawson M. A., Colonno R. J., Semler B. L. 1989; Chimeric picornavirus polyproteins demonstrate a common 3C proteinase substrate specificity. Journal of Virology 63:3444–3452
    [Google Scholar]
  35. Di Francesco V., Garnier J., Munson P. J. 1996; Improving protein secondary structure prediction with aligned homologous sequences. Protein Science 5:106–113
    [Google Scholar]
  36. Domier L. L., Franklin K. M., Shahabuddin M., Hellmann G. M., Overmeyer J. H., Hiremath S. T., Siaw M. F. E., Lomonossoff G. P., Shaw J. G., Rhoads R. E. 1986; The nucleotide sequence of tobacco vein mottling virus RNA. Nucleic Acids Research 14:5417–5430
    [Google Scholar]
  37. Donnelly M. L. L., Gani D., Flint M., Monaghan S., Ryan M. D. 1997; The cleavage activities of aphtho- and cardiovirus 2A proteins. Journal of General Virology 78:13–21
    [Google Scholar]
  38. Dougherty W. G., Parks T. D. 1989; Molecular genetic and biochemical evidence for the involvement of the heptapeptide cleavage sequence in determining the reaction profile at two tobacco etch virus cleavage sites in cell-free assays. Virology 172:145–155
    [Google Scholar]
  39. Dougherty W. G., Parks T. D. 1991; Post-translational processing of the tobacco etch virus 49-kDa small nuclear inclusion polyprotein: identification of an internal cleavage site and delimitation of VPg and proteinase domains. Virology 183:449–456
    [Google Scholar]
  40. Dougherty W. G., Semler B. L. 1993; Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiological Reviews 57:781–822
    [Google Scholar]
  41. Dougherty W. G., Cary S. M., Parks T. D. 1989a; Molecular genetic analysis of a plant virus polyprotein cleavage site : a model. Virology 171:356–364
    [Google Scholar]
  42. Dougherty W. G., Parks T. D., Cary S. M., Bazan J. F., Fletterick R. J. 1989b; Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase. Virology 172:302–310
    [Google Scholar]
  43. Etchison D., Milburn S. C., Edery I., Sonenberg N., Hershey J. W. B. 1982; Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 200,000-dalton polypeptide associated with eukaryotic initiation factor 3 and cap binding protein complex. Journal of Biological Chemistry 257:14806–14810
    [Google Scholar]
  44. Falk M, Grigera P. R., Bergmann I. E., Zibert A., Multhaup G., Beck E. 1990; Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host histone H3. Journal of Virology 64:748–756
    [Google Scholar]
  45. Felsenstein J. 1991; PHYLIP manual version 3.4. University Herbarium, University of California, Berkeley,California:
    [Google Scholar]
  46. Franssen H., Goldbach R., vanKammen A. 1984a; Translation of bottom component RNA of cowpea mosaic virus in reticulocyte lysate: faithful proteolytic processing of the primary translation product. Virus Research 1:39–49
    [Google Scholar]
  47. Franssen H., Leunissen J., Goldbach R., Lomonossoff G. P., Zimmern D. 1984b; Homologous sequences in nonstructural proteins from cowpea mosaic virus and picornaviruses. EMBO Journal 3:855–861
    [Google Scholar]
  48. Garcia J. A., Lain S., Cervera M. T., Riechmann J. L., Martin M. T. 1990; Mutational analysis of plum pox potyvirus polyprotein processing by the NIa protease in Escherichia coli . Journal of General Virology 71:2773–2779
    [Google Scholar]
  49. Ghabrial S. A., Smith H. A., Parks T. D., Dougherty W. G. 1990; Molecular genetic analyses of the soybean mosaic virus NIa proteinase. Journal of General Virology 71:1921–1927
    [Google Scholar]
  50. Gorbalenya A. E., Svitkin Y. V. 1983; Encephalomyocarditis virus protease: purification and role of the SH groups in processing of the precursor of structural proteins. Biochemistry (USSR) 48:385–395
    [Google Scholar]
  51. Gorbalenya A. E., Svitkin Y. V., Kazachkov Y. A., Agol V. I. 1979; Encephalomyocarditis virus-specific polypeptide p22 is involved in the processing of the viral precursor polypeptides. FEBS Letters 108:1–5
    [Google Scholar]
  52. Gorbalenya A. E., Blinov V. M., Donchenko A. P. 1986; Poliovirus- encoded proteinase 3C: a possible evolutionary link between cellular serine and cysteine proteinase families. FEBS Letters 194:253–257
    [Google Scholar]
  53. Gorbalenya A. E., Koonin E. V., Blinov V. M., Donchenko A. P. 1988; Sobemovirus genome appears to encode a serine protease related to cysteine proteases of picornaviruses. FEBS Letters 236:287–290
    [Google Scholar]
  54. Gorbalenya A. E., Donchenko A. P., Blinov V. M., Koonin E. V. 1989a; Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Letters 243:103–114
    [Google Scholar]
  55. Gorbalenya A. E., Donchenko A. P., Blinov V. M., Koonin E. V. 1989b; N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Research 17:3889–3897
    [Google Scholar]
  56. Gorbalenya A. E., Koonin E. V., Lai M. M. -C. 1991; Putative papain-related thiol protease of positive strand RNA viruses : identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Letters 288:201–205
    [Google Scholar]
  57. Gough K. H., Shukla D. D. 1993; The nucleotide sequence of Johnson grass mosaic potyvirus genomic RNA. Intervirology 36:181–192
    [Google Scholar]
  58. Greif C., Hemmer O, Fritsch C. 1988; Nucleotide sequence of tomato black ring virus RNA-1. Journal of General Virology 69:1517–1529
    [Google Scholar]
  59. Grubman M. J., Zellner M., Bablanian G., Mason P. W., Piccone M. E. 1995; Identification of the active-site residues of the 3C proteinase of foot-and-mouth disease virus. Virology 213:581–589
    [Google Scholar]
  60. Gunasinghe U. B., Flasinski S., Nelson R. S., Cassidy B. G. 1994; Nucleotide sequence and genome organization of peanut stripe potyvirus. Journal of General Virology 75:2519–2526
    [Google Scholar]
  61. Hambidge S. J., Sarnow P. 1992; Translational enhancement of the poliovirus 5′ noncoding region mediated by virus-encoded polypeptide 2A. Proceedings of the National Academy of Sciences USA: 8910272–10276
    [Google Scholar]
  62. Hammerle T., Hellen C. U. T., Wimmer E. 1991; Site-directed mutagenesis of the putative catalytic triad of poliovirus 3C proteinase. Journal of Biological Chemistry 266:5412–5416
    [Google Scholar]
  63. Hanecak R., Semler B. L., Anderson C. W., Wimmer E. 1982; Proteolytic processing of poliovirus polypeptides : antibodies to polypeptide P3-7c inhibit cleavage at glutamine glycine pairs. Proceedings of the National Academy of Sciences USA: 793973–3977
    [Google Scholar]
  64. Hans F., Sanfaçon H. 1995; Tomato ringspot nepovirus protease : characterization and cleavage site specificity. Journal of General Virology 76:917–927
    [Google Scholar]
  65. Harmon S. A., Updike W., Jia X., Summers D. F., Ehrenfeld E. 1992; Polyprotein processing in cis and in trans by hepatitis A virus 3C protease cloned and expressed in Escherichia coli . Journal of Virology 66:5242–5247
    [Google Scholar]
  66. Harris K. S., Xiang W., Alexander L., Lane W. S., Paul A. V., Wimmer E. 1994; Interaction of poliovirus polypeptide 3CDpro with the 5′ and 3′ termini of the poliovirus genome. Journal of Biological Chemistry 269:27004–27014
    [Google Scholar]
  67. Hellen C. U. T., Krausslich H. -G., Wimmer E. 1989; Proteolytic processing of polyproteins in the replication of RNA viruses. Biochemistry 28:9881–9890
    [Google Scholar]
  68. Hellen C. U. T., Facke M., Krausslich H., Lee C., Wimmer E. 1991; Characterisation of poliovirus 2A proteinase by mutational analysis : residues required for autocatalytic activity are essential for induction of eukaryotic initiation factor 4F polypeptide p220. Journal of Virology 65:4226–4231
    [Google Scholar]
  69. Hellen C. U. T., Lee C., Wimmer E. 1992; Determinants of substrate recognition by poliovirus 2A proteinase. Journal of Virology 66:3330–3338
    [Google Scholar]
  70. Hellmann G. M., Shaw J. G., Rhoads R. E. 1988; In vitro analysis of tobacco vein mottling virus NIa cistron: evidence for a virus-encoded protease. Virology 163:554–562
    [Google Scholar]
  71. Higgins D. E., Bleasby A. J., Fuchs R. 1991; CLUSTAL V: improved software for multiple sequence alignment. Computer Applications in the Biosciences 8:189–191
    [Google Scholar]
  72. Jackson R. J. 1986; A detailed kinetic analysis of the in vitro synthesis and processing of encephalomyocarditis virus products. Virology 149:114–127
    [Google Scholar]
  73. Jia X. -Y., Ehrenfeld E., Summers D. F. 1991; Proteolytic activity of hepatitis A virus 3C protein. Journal of Virology 65:2595–2600
    [Google Scholar]
  74. Jia X. -Y., Summers D. F., Ehrenfeld E. 1993; Primary cleavage of the HAV capsid protein precursor in the middle of the proposed 2A coding region. Virology 193:515–519
    [Google Scholar]
  75. Joachims M., Harris K. S., Etchison D. 1995; Poliovirus protease 3C mediates cleavage of microtubule-associated protein 4. Virology 211:451–461
    [Google Scholar]
  76. Johansen E., Rasmussen O. F., Heide M., Borkhardt B. 1991; The complete nucleotide sequence of pea seed-borne mosaic virus RNA. Journal of General Virology 72:2625–2632
    [Google Scholar]
  77. Jore J., De Geus B., Jackson R. J., Pouwels P. H., Enger-Valk B. E. 1988; Poliovirus protein 3CD is the active protease for processing of the precursor protein P1 in vitro . Journal of General Virology 69:1627–1636
    [Google Scholar]
  78. Kashiwazaki S., Hayano Y., Minobe Y., Omura T., Hibino H., Tsuchizaki T. 1989; Nucleotide sequence of the capsid protein gene of barley yellow mosaic virus. Journal of General Virology 70:3015–3023
    [Google Scholar]
  79. Kashiwazaki S., Minobe Y., Hibino H. 1991; Nucleotide sequence of barley yellow mosaic virus RNA 2. Journal of General Virology 72:995–999
    [Google Scholar]
  80. Kay J., Dunn B. M. 1990; Viral proteinases : weakness in strength. Biochimica et Biophysica Acta 1048:1–18
    [Google Scholar]
  81. Kean K. M., Tetrina N. L., Marc D., Girad M. 1991; Analysis of putative active site residues of the poliovirus 3C protease. Virology 163:330–340
    [Google Scholar]
  82. Kean K. M., Howell M. T., Grunert S., Girard M., Jackson R. J. 1993; Substitution mutations at the putative catalytic triad of the poliovirus 3C protease have differential effects on cleavage at different sites. Virology 194:360–364
    [Google Scholar]
  83. Kim D. -H., Park Y. S., Kim S. S., Lew J., Nam H. G., Choi K. Y. 1995; Expression, purification, and identification of a novel selfcleavage site of the NIa C-terminal 27-kDa protease of turnip mosaic potyvirus C5. Virology 213:517–525
    [Google Scholar]
  84. Kirchweger R., Ziegler E., Lamphear B. J., Waters D., Liebig H. -D., Sommergruber W., Sobrino F., Hohenadl C., Blaas D., Rhoads R. E., Skern T. 1994; Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on elF-4y. Journal of Virology 68:5677–5684
    [Google Scholar]
  85. Konig H., Rosenwirth B. 1988; Purification and partial characterization of poliovirus protease 2A by means of a functional assay. Journal of Virology 62:1243–1250
    [Google Scholar]
  86. Korant B. D. 1972; Cleavage of viral precursor proteins in vivo and in vitro. Journal of Virology 10:751–759
    [Google Scholar]
  87. Korant B. D. 1973; Cleavage of poliovirus-specific polypeptide aggregates. Journal of Virology 12:556–563
    [Google Scholar]
  88. Korant B. D., Chow N., Lively M., Powers J. 1979; Virus-specified protease in poliovirus-infected HeLa cells. Proceedings of the National Academy of Sciences USA: 762992–2995
    [Google Scholar]
  89. Korant B. D., Brzin J., Turk V. 1985; Cystatin, a protein inhibitor of cysteine proteases alters viral protein cleavages in infected human cells. Biochemical and Biophysical Research Communications 127:1072–1076
    [Google Scholar]
  90. Lain S., Riechmann J. L., Garcia J. A. 1989; The complete nucleotide sequence of plum pox potyvirus RNA. Virus Research 13:157–172
    [Google Scholar]
  91. Lamphear B. J., Yan R., Yang F., Waters D., Liebig H. -D., Klump H., Keuchler E., Skern T., Rhoads R. E. 1993; Mapping of the cleavage site in protein synthesis initiation factor eIF-4γ of the 2A proteases from human coxsackievirus and rhinovirus. Journal of Biological Chemistry 268:19200–19203
    [Google Scholar]
  92. Lawrence C., Thatch R. E. 1975; Identification of a viral protein involved in post-translational maturation of the encephalomyocarditis virus capsid precursor. Journal of Virology 15:918–928
    [Google Scholar]
  93. Lawson M. A., Semler B. L. 1990; Picornavirus protein processing - enzymes, substrates, and genetic regulation. Current Topics in Microbiology and Immunology 161:49–87
    [Google Scholar]
  94. Lawson M. A., Semler B. L. 1991; Poliovirus thiol proteinase 3C can utilize a serine nucleophile within the putative catalytic triad. Proceedings of the National Academy of Sciences USA: 889919–9923
    [Google Scholar]
  95. Lawson T. G., Smith L. L., Palmenberg A. C., Thach R. E. 1989; Inducible expression of encephalomyocarditis virus 3C protease activity in stably transformed mouse cell lines. Journal of Virology 63:5013–5022
    [Google Scholar]
  96. Lee C. -K., Wimmer E. 1988; Proteolytic processing of poliovirus polyprotein: elimination of 2Apro-mediated, alternative cleavage of polypeptide 3CD by in vitro mutagenesis. Virology 166:405–414
    [Google Scholar]
  97. Le Gall O., Candresse T., Brault V., Dunez J. 1989; Nucleotide sequence of Hungarian grapevine chrome mosaic nepovirus RNA1. Nucleic Acids Research 17:7795–7807
    [Google Scholar]
  98. Leong L. E. C., Walker P. A., Porter A. G. 1993; Human rhinovirus- 14 protease 3C (3Cpro) binds specifically to the 5′-noncoding region of the viral RNA. Journal of Biological Chemistry 268:25735–25739
    [Google Scholar]
  99. Lesk A. M., Fordham W. D. 1996; Conservation and variability in the structures of serine proteinases of the chymotrypsin family. Journal of Molecular Biology 258:501–537
    [Google Scholar]
  100. Liao D. -I., Remington S. J. 1990; Structure of wheat serine carboxypeptidase II at 3·5-Å resolution. Journal of Biological Chemistry 265:6528–6531
    [Google Scholar]
  101. Lomonossoff G. P., Shanks M. 1983; The nucleotide sequence of cowpea mosaic virus B RNA. EMBO Journal 2:2253–2258
    [Google Scholar]
  102. Long L. A., Orr D. C., Cameron J. M., Dunn B. M., Kay J. 1989; A consensus sequence for substrate hydrolysis by rhinovirus 3C proteinase. FEBS Letters 258:75–78
    [Google Scholar]
  103. Macadam A. J., Ferguson G., Fleming T., Stone D. M., Almond J. W., Minor P. D. 1994; Role for poliovirus protease 2A in cap independent translation. EMBO Journal 13:924–927
    [Google Scholar]
  104. McLean C., Matthews T. J., Rueckert R. R. 1976; Evidence of ambiguous processing and selective degradation in the noncapsid proteins of rhinovirus 1a. Journal of Virology 19:903–914
    [Google Scholar]
  105. Maia I. G., Haenni A. -L., Bernardi F. 1996; Potyviral HC-Pro: a multifunctional protein. Journal of General Virology 77:1335–1341
    [Google Scholar]
  106. Maiss E., Timpe U., Brisske A., Jelkmann W., Casper R., Himmler G., Mattanovich D., Katinger H. W. D. 1989; The complete nucleotide sequence of plum pox virus RNA. Journal of General Virology 70:513–524
    [Google Scholar]
  107. Marcos J. F., Beachy R. N. 1994; In vitro characterization of a cassette to accumulate multiple proteins through synthesis of a selfprocessing polypeptide. Plant Molecular Biology 24:495–503
    [Google Scholar]
  108. Margis R., Pinck L. 1992; Effects of site-directed mutagenesis on the presumed catalytic triad and substrate-binding pocket of grapevine fanleaf nepovirus 24-kDa proteinase. Virology 190:884–888
    [Google Scholar]
  109. Margis R., Viry M., Pinck M., Pinck L. 1991; Cloning and in vitro characterisation of the grapevine fanleaf virus proteinase cistron. Virology 185:779–787
    [Google Scholar]
  110. Martinez-Salas E., Domingo E. 1995; Effect of expression of the aphthovirus protease 3C on viral infection and gene expression. Virology 212:111–120
    [Google Scholar]
  111. Matthews D. A., Smith W. W., Ferre R. A., Condon B., Budahazi G., Sisson W., Villafranca J. E., Janson C. A., McElroy H. E., Gribskov C. L., Worland S. 1994; Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761–771
    [Google Scholar]
  112. Medina M., Domingo E., Brangwyn J. K., Belsham G. J. 1993; The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology 194:355–359
    [Google Scholar]
  113. Menard R., Plouffe C., Laflamme P., Vernet T., Tessier D. C., Thomas D. Y., Storer A. C. 1995; Modification of the electrostatic environment is tolerated in the oxyanion hole of the cysteine proteinase papain. Biochemistry 34:464–471
    [Google Scholar]
  114. Molla A., Paul A. V., Schmid M., Jang S. K., Wimmer E. 1993; Studies on dicistronic polioviruses implicate viral proteinase 2Apro in RNA replication. Virology 196:739–747
    [Google Scholar]
  115. Molla A., Harris K. S., Paul A. V., Shin S. H., Mugavero J., Wimmer E. 1994; Stimulation of poliovirus proteinase 3Cpro-related proteolysis by the genome-linked protein VPg and its precursor 3AB. Journal of Biological Chemistry 269:27015–27020
    [Google Scholar]
  116. Palkovics L., Burgyan J., Balazs E. 1993; Comparative sequence analysis of four complete primary structures of plum pox virus strains. Virus Genes 7:339–347
    [Google Scholar]
  117. Palmenberg A. C. 1990; Proteolytic processing of picornaviral polyprotein. Annual Review of Microbiology 44:603–623
    [Google Scholar]
  118. Palmenberg A. C., Pallansch M. A., Rueckert R. R. 1979; Protease required for processing picornaviral coat protein residues resides in the viral replicase gene. Journal of Virology 32:770–778
    [Google Scholar]
  119. Palmenberg A. C., Parks G. D., Hall D. J., Ingraham R. H., Seng T. W., Pallai P. V. 1992; Proteolytic processing of the cardioviral P2 region: primary 2A/2B cleavage in clone-derived precursors. Virology 190:754–762
    [Google Scholar]
  120. Parks G. D., Baker J. C., Palmenberg A. C. 1989; Proteolytic cleavage of encephalomyocarditis virus capsid region substrates by precursors to the 3C enzyme. Journal of Virology 63:1054–1058
    [Google Scholar]
  121. Parks T. D., Smith H. A., Dougherty W. G. 1992; Cleavage profiles of tobacco etch virus (TEV)-derived substrates mediated by precursor and processed forms of the TEV NIa proteinase. Journal of General Virology 73:149–155
    [Google Scholar]
  122. Parks T. D., Howard E. D., Wolpert T. J., Arp D. J., Dougherty W. G. 1995; Expression and purification of a recombinant tobacco etch virus NIa proteinase : biochemical analyses of the full-length and a naturally occurring truncated proteinase form. Virology 120:194–201
    [Google Scholar]
  123. Pelham H. R. B. 1978; Translation of encephalomyocarditis virus RNA in vitro yields an active proteolytic processing enzyme. European Journal of Chemistry 85:457–462
    [Google Scholar]
  124. Peters S. A., Voorhorst W. G. B., Wery J., Wellink J., van Kammen A. 1992; A regulatory role for the 32K protein in proteolytic processing of cowpea mosaic virus proteins. Virology 191:81–89
    [Google Scholar]
  125. Piccone M. E., Zellner M., Kumosinski T. F., Mason P. W., Grubman M. J. 1995; Identification of the active-site residues of the L proteinase of foot-and-mouth disease virus. Journal of Virology 69:4950–4956
    [Google Scholar]
  126. Puurand Ü., Mäkinen K., Paulin L., Saarma M. 1994; The nucleotide sequence of potato virus A genomic RNA and its sequence similarities with other potyviruses. Journal of General Virology 75:457–461
    [Google Scholar]
  127. Riechmann J. L., Lain S., Garcia J. A. 1992; Highlights and prospects of potyvirus molecular biology. Journal of General Virology 73:1–16
    [Google Scholar]
  128. Ritzenthaler C., Viry M., Pinck M., Margis R., Fuchs M., Pinck L. 1991; Complete nucleotide sequence and genetic organization of grapevine fanleaf nepovirus RNA1. Journal of General Virology 72:2357–2365
    [Google Scholar]
  129. Robaglia C., Durand-Tardif M., Tronchet M., Boudazin G., Astier-Manifacier S., Casse-Delbart F. 1989; Nucleotide sequence of potato virus Y (N strain) genomic RNA. Journal of General Virology 70:935–947
    [Google Scholar]
  130. Roberts P. J., Belsham G. J. 1995; Identification of critical amino acids within the foot-and-mouth disease virus leader protein, a cysteine protease. Virology 213:140–146
    [Google Scholar]
  131. Roos R. P., Kong W., Semler B. L. 1989; Polyprotein processing of Theilers murine encephalomyelitis virus. Journal of Virology 63:5344–5353
    [Google Scholar]
  132. Rott M. E., Gilchrist A., Lee L., Rochon D. 1995; Nucleotide sequence of tomato ringspot virus RNA 1. Journal of General Virology 76:465–473
    [Google Scholar]
  133. Rueckert R. R., Matthews T. J., Kew O. M., Pallansch M. A., McLean C., Omilianowski D. R. 1979; . In The Molecular Biology of Picorna- viruses, Chapter 6, pp 113–125 Perez-Bercoff R. Edited by New York: Plenum Press;
    [Google Scholar]
  134. Ryan M. D., Drew J. 1994; Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO Journal 13:928–933
    [Google Scholar]
  135. Ryan M. D., Belsham G. J., King A. M. Q. 1989; Specificity of substrate-enzyme interactions in foot-and-mouth disease virus polyprotein processing. Virology 173:35–45
    [Google Scholar]
  136. Ryan M. D., King A. M. Q., Thomas G. P. 1991; Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. Journal of General Virology 72:2727–2732
    [Google Scholar]
  137. Sangar D. V., Newton S. E., Rowlands D. J., Clarke B. E. 1987; All FMDV serotypes initiate protein synthesis at two separate AUGs. Nucleic Acids Research 15:3305–3315
    [Google Scholar]
  138. Sangar D. V., Clark R. P., Carroll A. R., Rowlands D. J., Clarke B. E. 1988; Modification of the leader protein (Lb) of foot-and-mouth disease virus. Journal of General Virology 69:2327–2333
    [Google Scholar]
  139. Schechter I., Berger A. 1967; On the size of the active site in proteases. I. papain. Biochemical and Biophysical Research Communications 27:157–162
    [Google Scholar]
  140. Schultheiss T., Kusov Y. Y., Gauss-Muller V. 1994; Proteinase 3C of hepatitis A virus (HAV) cleaves the HAV polyprotein P2-P3 at all sites including VP1/2A and 2A/2B. Virology 198:275–281
    [Google Scholar]
  141. Schultheiss T., Emerson S. U., Purcell R. H., Gauss-Muller V. 1995a; Polyprotein processing in echovirus 22 - a first assessment. Biochemical and Biophysical Research Communications 219:1120–1127
    [Google Scholar]
  142. Schultheiss T., Sommergruber W., Kusov Y., Gauss-Muller V. 1995b; Cleavage specificity of purified recombinant hepatitis A virus 3C proteinase on natural substrates. Journal of Virology 69:1727–1733
    [Google Scholar]
  143. Shanks M., Lomonossoff G. P. 1990; The primary structure of the 24K protease from red clover mottle virus: implications for the mode of action of comovirus proteases. Journal of General Virology 71:735–738
    [Google Scholar]
  144. Shen P., Kaniewska M., Smith C., Beachy R. 1993; Nucleotide sequence and genomic organization of rice tungro spherical virus. Virology 193:621–630
    [Google Scholar]
  145. Skern T., Sommergruber W., Auer H., Volkmann P., Zorn M., Liebig H. -D., Fessl F., Blaas D., Keuchler E. 1991; Substrate requirements of a human rhinoviral 2A proteinase. Virology 181:46–54
    [Google Scholar]
  146. Sommergruber W., Zorn M., Blaas D., Fessl F., Volkmann P., Maurer-Fogy I., Pallai P., Merluzzi V., Matteo M., Skern T., Keuchler E. 1989; Polypeptide 2A of human rhinovirus type 2: identification as a protease and characterisation by mutational analysis. Virology 169:68–77
    [Google Scholar]
  147. Sommergruber W., Casari G., Fessl F., Seipelt J., Skern T. 1994a; The 2A proteinase of human rhinovirus is a zinc containing enzyme. Virology 204:815–818
    [Google Scholar]
  148. Sommergruber W., Ahorn H., Klump H., Seipelt J., Zoephel A., Fessl F., Krystek E., Blaas D., Keuchler E., Liebig H. -D., Skern T. 1994b; 2A proteinases of coxsackie- and rhinovirus cleave peptides derived from eIF-4y via a common recognition motif. Virology 198:741–745
    [Google Scholar]
  149. Sonenberg N. 1990; Poliovirus translation. Current Topics in Microbiology and Immunology 161:23–42
    [Google Scholar]
  150. Sreenivasan U., Axelsen P. H. 1992; Buried water in homologous serine proteases. Biochemistry 31:2785–2791
    [Google Scholar]
  151. Stanway G. 1990; Structure, function and evolution of picornaviruses. Journal of General Virology 71:2483–2501
    [Google Scholar]
  152. Steitz T. A., Schulman R. G. 1982; Crystallographic and NMR studies of the serine proteinases. Annual Review of Biophysics and Bioengineering 11:419–444
    [Google Scholar]
  153. Strebel K., Beck E. 1986; A second protease of foot-and-mouth disease virus. Journal of Virology 58:893–899
    [Google Scholar]
  154. Summers D. F., Maizel J. V. 1968; Evidence for large precursor proteins in poliovirus synthesis. Proceedings of the National Academy of Sciences USA: 59966–971
    [Google Scholar]
  155. Summers D. F., Shaw E. N., Stewart M. L., Maizel J. V. 1972; Inhibition of cleavage of large poliovirus-specific precursor proteins in infected HeLa cells by inhibitors of proteolytic enzymes. Journal of Virology 10:880–884
    [Google Scholar]
  156. Tesar M., Marquardt O. 1990; Foot-and-mouth disease virus protease 3C inhibits cellular transcription and mediates cleavage of histone H3. Virology 174:364–374
    [Google Scholar]
  157. Teycheney P. Y., Tavert G., Delbos R., Ravelonandro M., Dunez J. 1989; The complete nucleotide sequence of plum pox virus RNA (strain D). Nucleic Acids Research 17:10115–10116
    [Google Scholar]
  158. Thatch R. E. 1992; Cap-recap: the involvement of eIF-4F in regulating gene expression. Cell 68:177–180
    [Google Scholar]
  159. Toyoda H., Nicklin M. J. H., Murray M. G., Anderson C. W., Dunn J. J., Studier F. W., Wimmer E. 1986; A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45:761–770
    [Google Scholar]
  160. Turnbull-Ross A. D., Reavy B., Mayo M. A., Murant A. F. 1992; The nucleotide sequence of parsnip yellow fleck virus: a plant picorna- like virus. Journal of General Virology 73:3203–3211
    [Google Scholar]
  161. Vakharia V. N., DeVaney M. A., Moore D. M., Dunn J. J., Grubman M. J. 1987; Proteolytic processing of foot-and-mouth disease virus polyproteins expressed in a cell-free system from clone derived transcripts. Journal of Virology 61:3199–3207
    [Google Scholar]
  162. van der Peer Y., deWachter R. 1994; TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Computer Applications in the Biosciences 10:569–570
    [Google Scholar]
  163. Vance V. B., Beachy R. N. 1984; Translation of soybean mosaic virus RNA in vitro: evidence of protein processing. Virology 132:271–281
    [Google Scholar]
  164. Vance V. B., Moore D., Turpen T. H., Bracker A., Hollowell V. C. 1992; The complete nucleotide sequence of pepper mottle virus genomic RNA: comparison of the encoded polyprotein with those of other sequenced potyviruses. Virology 191:19–30
    [Google Scholar]
  165. Verchot J., Koonin E., Carrington J. C. 1991; The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology 185:527–535
    [Google Scholar]
  166. Verchot J., Herndon K. L., Carrington J. C. 1992; Mutational analysis of the tobacco etch potyviral 35-kDa proteinase : identification of essential residues and requirements for autoproteolysis. Virology 190:298–306
    [Google Scholar]
  167. Verver J., Goldbach R., Garcia J. A., Vos P. 1987; In vitro expression of a full-length DNA copy of cowpea mosaic virus B RNA: identification of the B RNA-encoded 24 kDa protein as a viral protease. EMBO Journal 6:549–554
    [Google Scholar]
  168. Vos P., Verver J., Jaegle M., Wellink J., van Kammen A., Goldbach R. 1988; Two viral proteins involved in the proteolytic processing of cowpea mosaic virus polyproteins. Nucleic AcidsResearch 16:1967–1985
    [Google Scholar]
  169. Voss T., Meyer R., Sommergruber W. 1995; Spectroscopic characterization of rhinoviral protease 2A: Zn is essential for the structural integrity. Protein Science 4:2526–2531
    [Google Scholar]
  170. Walker P. A., Leong L. E. C., Porter A. G. 1995; Sequence and structural determinants of the interaction between the 5′-noncoding region of picornavirus RNA and rhinovirus protease 3C. Journal of Biological Chemistry 270:14510–14516
    [Google Scholar]
  171. Warshel A., Naray-Szabo G., Sussman F., Hwang J. 1989; How do serine proteinases really work?. Biochemistry 28:3629–3637
    [Google Scholar]
  172. Wellink J., van Kammen A. 1988; Proteases involved in the processing of viral polyproteins. Archives of Virology 98:1–26
    [Google Scholar]
  173. Whiting A. K., Peticolas W. L. 1994; Details of the acyl-enzyme intermediate and the oxyanion hole in serine protease catalysis. Biochemistry 33:552–561
    [Google Scholar]
  174. Yeh S. -P., Gonsalves D. 1985; Translation of papaya ringspot virus RNA in vitro : detection of a possible polyprotein that is processed for capsid protein, cylindrical inclusion protein and amorphous-inclusion protein. Virology 143:260–271
    [Google Scholar]
  175. Ypma-Wong M. F., Dewalt P. G., Johnson V. H., Lamb J. G., Semler B. L. 1988; Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology 166:265–270
    [Google Scholar]
  176. Yu S. F., Lloyd R. E. 1991; Identification of essential amino acid residues in the functional activity of poliovirus 2A protease. Virology 182:615–625
    [Google Scholar]
  177. Yu S. F., Lloyd R. E. 1992; Characterization of the roles of conserved cysteine and histidine residues in poliovirus 2A protease. Virology 186:725–735
    [Google Scholar]
  178. Yu S. F., Benton P., Bovee M., Sessions J., Lloyd R. E. 1995; Defective RNA replication by poliovirus mutants deficient in 2A protease cleavage activity. Journal of Virology 69:247–252
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-4-699
Loading
/content/journal/jgv/10.1099/0022-1317-78-4-699
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error