1887

Abstract

SUMMARY

The major inverted repeat of 7319.5 base pairs is present at an internal site in the varicella-zoster virus genome and at one terminus. A DNA sequence of 7747 base pairs containing the repeat was determined and analysed. The G + C content of the repeat is not uniform, and is significantly higher than that of adjacent unique regions. The repeat contains a G + C-rich reiterated sequence, an A + T-rich sequence with the potential of forming a hairpin structure which may form part of an origin of DNA replication, and three open reading frames predicted to encode primary translation products with approximate molecular weights of 140 000, 30 000 and 20 000. The possibility is discussed that the expression of other open reading frames near the genome termini may depend upon genome conformation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-66-2-207
1985-02-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/66/2/JV0660020207.html?itemId=/content/journal/jgv/10.1099/0022-1317-66-2-207&mimeType=html&fmt=ahah

References

  1. Blumenthal R. M., Rice P. J., Roberts R. J. 1982; Computer programs for nucleic acid sequence manipulation. Nucleic Acids Research 10:91–101
    [Google Scholar]
  2. Clements J. B., Watson R. J., Wilkie N. M. 1977; Temporal regulation of herpes simplex virus type 1 transcription: location of transcripts on the viral genome. Cell 12:275–285
    [Google Scholar]
  3. Davison A. I. 1983; DNA sequence of the Us component of the varicella-zoster virus genome. EMBO Journal 2:2203–2209
    [Google Scholar]
  4. Davison A. J. 1984; Structure of the genome termini of varicella-zoster virus. Journal of General Virology 65:1969–1977
    [Google Scholar]
  5. Davison A. J., Scott J. E. 1983; Molecular cloning of the varicella-zoster virus genome and derivation of six restriction endonuclease maps. Journal of General Virology 64:1811–1814
    [Google Scholar]
  6. Davison A. J., Wilkie N. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  7. Davison A. J., Wilkie N. M. 1983; Location and orientation of homologous sequences in the genomes of five herpesviruses. Journal of General Virology 64:1927–1942
    [Google Scholar]
  8. Dumas A. M., Geelen J. L. M. C., Weststrate M. W., Wertheim P., van Der Noordaa J. 1981; XbaⅠ, PstⅠ and BglⅡ restriction enzyme maps of the two orientations of the varicella-zoster virus genome. Journal of Virology 39:390–400
    [Google Scholar]
  9. Ecker J. R., Hyman R. W. 1982; Varicella-zoster virus DNA exists as two isomers. Proceedings of the National Academy of Sciences, U. S. A 79:156–160
    [Google Scholar]
  10. Fitzgerald M., Shenk T. 1981; The sequence 5′-AAUAAA-3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24:251–260
    [Google Scholar]
  11. Honess R. W., Watson D. H. 1977; Unity and diversity in the herpesviruses. Journal of General Virology 37:1537
    [Google Scholar]
  12. Jones P. C., Hayward G. S., Roizman B. 1977; Anatomy of herpes simplex virus DNA. VII. a RNA is homologous to noncontiguous sites in both the L and S components of viral DNA. Journal of Virology 21:268–276
    [Google Scholar]
  13. Ludwig H., Haines H. G., Biswal N., Benyesh-Melnick M. 1972; The characterization of varicella-zoster virus DNA. Journal of General Virology 14:111–114
    [Google Scholar]
  14. Mackem S., Roizman B. 1982; Structural features of the herpes simplex virus α gene 4, 0 and 27 promoter-regulatory sequences which confer a regulation on chimeric thymidine kinase genes. Journal of Virology 44:939–949
    [Google Scholar]
  15. Matthews R. E. F. 1982; Classification and nomenclature of viruses. Intervirology 17:1–199
    [Google Scholar]
  16. Messing J., Vieira J. 1982; A new pair of M13 vectors for selecting either strand of double-digest restriction fragments. Gene 19:269–276
    [Google Scholar]
  17. Mocarski E. S., Roizman B. 1982; Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31:89–97
    [Google Scholar]
  18. Murchie M. J., McGEOCH D. J. 1982; DNA sequence analysis of an immediate-early gene region of the herpes simplex virus type 1 genome (map coordinates 0.950 to 0.978). Journal of General Virology 62:1–15
    [Google Scholar]
  19. Post L. E., Mackem S., Roizman B. 1981; Regulation of a genes of herpes simplex virus: expression of chimeric genes produced by fusion of thymidine kinase with α gene promoters. Cell 24:555–566
    [Google Scholar]
  20. Preston C. M., Cordingley M. G., Stow N. D. 1984; Analysis of DNA sequences which regulate the transcription of a herpes simplex virus immediate early gene. Journal of Virology 50:708–716
    [Google Scholar]
  21. Pustell J., Kafatos F. C. 1982; A high speed, high capacity homology matrix: zooming through SV40 and polyoma. Nucleic Acids Research 10:4765–4782
    [Google Scholar]
  22. Rixon F. J., Clements J. B. 1982; Detailed structural analysis of two spliced HSV-1 immediate-early mRNAs. Nucleic Acids Research 10:2241–2256
    [Google Scholar]
  23. Rixon F. J., McGeoch D. J. 1984; A 3′ co-terminal family of mRNAs from the herpes-simplex virus type 1 short region: two overlapping reading frames encode unrelated polypeptides one of which has a highly reiterated amino acid sequence. Nucleic Acids Research 12:2473–2487
    [Google Scholar]
  24. Rixon F. J., Campbell M. E., Clements J. B. 1982; The immediate-early mRNA that encodes the regulatory polypeptide Vmw 175 of herpes simplex virus type 1 is unspliced. EMBO Journal 1:1273–1277
    [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U. S. A 74:5463–5467
    [Google Scholar]
  26. Sanger F., Coulson A. R., Barrell B. G., Smith A. J. H., Roe B. A. 1980; Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology 143:161–178
    [Google Scholar]
  27. Sheldrick P., Berthelot N. 1974; Inverted repetitions in the chromosome of herpes simplex virus. Cold Spring Harbor Symposia on Quantitative Biology 39:667–678
    [Google Scholar]
  28. Staden R. 1982; Automation of computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  29. Staden R., McLachlan A. D. 1982; Codon preference and its use in identifying protein coding regions in long DNA sequences. Nucleic Acids Research 10:141–156
    [Google Scholar]
  30. Stow N. D., McMonagle E. C. 1983; Characterization of the TRs/IRs origin of DNA replication of herpes simplex virus type 1. Virology 130:427–438
    [Google Scholar]
  31. Straus S. E., Owens J., Ruyechan W. T., Takiff H. E., Casey T. A., Vande Woude G. F., Hay J. 1982; Molecular cloning and physical mapping of varicella-zoster virus DNA. Proceedings of the National Academy of Sciences, U. S. A 79:993–997
    [Google Scholar]
  32. Straus S. E., Hay J., Smith H., Owens J. 1983; Genome differences among varicella-zoster virus isolates. Journal of General Virology 64:1031–1041
    [Google Scholar]
  33. Wadsworth S., Jacob R. J., Roizman B. 1975; Anatomy of herpes simplex virus DNA. II. Size, composition and arrangement of inverted terminal repetitions. Journal of Virology 15:1487–1497
    [Google Scholar]
  34. Watson R. J., Clements J. B. 1980; A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis. Nature, London 285:329–331
    [Google Scholar]
  35. Watson R. J., Sullivan M., Vande Woude G. F. 1981a; Structures of two spliced herpes simplex virus type 1 immediate-early mRNAs which map at the junctions of the unique and reiterated regions of the virus DNA S component. Journal of Virology 37:431–444
    [Google Scholar]
  36. Watson R. J., Umene K., Enquist L. W. 1981b; Reiterated sequences within the intron of an immediate-early gene of herpes simplex virus type 1. Nucleic Acids Research 9:4189–4199
    [Google Scholar]
  37. Whitton J. L., Clements J. B. 1984; Replication origins and a sequence involved in coordinate induction of the immediate-early gene family are conserved in an intergenic region of herpes simplex virus. Nucleic Acids Research 12:2061–2079
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-66-2-207
Loading
/content/journal/jgv/10.1099/0022-1317-66-2-207
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error