1887

Abstract

Chemotaxonomic, electron microscopic and 16S rRNA gene sequence analyses of the three described species of the genus demonstrated only remote similarities to each other. The 16S rRNA gene sequence similarities between and and the derived phylogenetic relationships of the three specie studied fell below genus level. All three species clustered within the phyletic group. Each species showed a distinct phospholipid pattern and whole-cell fatty acid distribution. Several isoprenologues of the lipoquinone ‘lipid F’ were found to differ in their quantitative distribution in the species. On the basis of these results, the new genera gen. nov. and gen. nov. are proposed. The type species of is comb. nov., and the type species of is [corrig.] comb. nov. The genus is consequently restricted to a single species, namely [corrig.].

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1861
1999-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1861.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1861&mimeType=html&fmt=ahah

References

  1. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826
    [Google Scholar]
  2. De Ley J. 1967 Molecular biology and bacterial phylogeny. Evolutionary Biology103–156 Edited by Dobzhansky T., Hecht M. K., Steere W. C. New York: Plenum Press;
    [Google Scholar]
  3. Dighe A. S., Shouche Y. S., Ranade D. R. 1998; Selenomonas lipolytica sp. nov., an obligately anaerobic bacterium possessing lipolytic activity. Int J Syst Bacteriol 48:783–791
    [Google Scholar]
  4. Felsenstein J. 1989; phylip - Phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  5. van Golde L. M. G., Prins R. A., Franklin-Klein W., Akkermans-Kryswijk J. 1973; Phosphatidylserine and its plasmalogen analogue as major lipid constituents in Megasphaera elsdenii. Biochim Biophys Acta 326:314–323
    [Google Scholar]
  6. Gutell R. R., Weiser B., Woese C. R., NoIler H. F. 1985; Comparative anatomy of 16S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol 32:155–216
    [Google Scholar]
  7. van Gylswyk N. O., Hippe H., Rainey F. A. 1997; Schwartzia succinivorans gen. nov., sp. nov., another ruminal bacterium utilizing succinate as the sole energy source. Int J Syst Bacteriol 47:155–159
    [Google Scholar]
  8. Helander I. M., Kilpelainen I.-M., Moran A. P., Lindner B., Seydel U. 1994; Chemical structure of the lipid A component of lipopolysaccharides of the genus Pectinatus. Eur J Biochem 224:63–70
    [Google Scholar]
  9. Henderson C., Hodgkiss W. 1973; An electron microscopic study of Anaerovibrio lipolytica (Strain 5S) and its lipolytic enzyme. J Gen Microbiol 76:389–393
    [Google Scholar]
  10. Hobson P. N., Mann S. O. 1961; The isolation of glycerolfermenting and lipolytic bacteria from the rumen of the sheep. J Gen Microbiol 25:227–240
    [Google Scholar]
  11. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe Laboratory Manual, 4th. Blacksburg, VA: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  12. Hungate R. E. 1966 The Rumen and its Microbes New York: Academic Press;
    [Google Scholar]
  13. Jantzen E., Hofstad T. 1981; Fatty acids of Fusobacterium species: taxonomic implications. J Gen Microbiol 123:163–171
    [Google Scholar]
  14. Johnston N. C., Goldfine H. 1982; Effects of growth temperature on fatty acid and alk-l-enyl group compositions of Veillonella parvula and Megasphaera elsdenii phospholipids. J Bacteriol 149:567–575
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. Mammalian Protein Metabolism21–132 Edited by Munro H. H. New York: Academic Press;
    [Google Scholar]
  16. Kamio Y., Takahashi H. 1980; Isolation and characterisation of outer and inner membranes of Selenomonas ruminantium. J Bacteriol 141:888–898
    [Google Scholar]
  17. Kamio Y., Kim K. C., Takahashi H. 1972a; Identification of the basic structure of a glycolipid from Selenomonas ruminantium·. as β-glucosaminyl-l,6-glucosamine. Agric Biol Chern 12:2195–2201
    [Google Scholar]
  18. Kamio Y., Kim K. C., Takahashi H. 1972b; Characterisation of lipopolysaccharides of Selenomonas ruminantium. Agric Biol Chern 13:2425–2432
    [Google Scholar]
  19. Karlson U., Dwyer D. F., Hooper S. W., Moore E. R. B., Timmis K. N., Eltis L. D. 1993; Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate. J Bacteriol 175:1467–1474
    [Google Scholar]
  20. Koga Y., Nishihara M., Morii H., Akagawa-Matsuhita M. 1993; Ether polar lipids of methanogeneic bacteria: structures, comparative aspects, and biosyntheses. Microbiol Rev 57:164–182
    [Google Scholar]
  21. Kroppenstedt R. M., Moller B., Hippe H. 1985 Quinones and Cellular Fatty Acids in Anaerobic BacteriaAbstracts of the ASM (German) local branch meetingWurzburg, Germany
    [Google Scholar]
  22. Lane D. J. 1991 16S/23S sequencing. Nucleic Acid Techniques in Bacterial Systematics115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  23. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A.editors 1992 International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Maidak B. L., Cole J. R., Parker C. T. Jr11 other authors 1999; A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27:171–173
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  26. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 26:584–586
    [Google Scholar]
  27. Miyagawa E., Azuma R., Suto T. 1979; Cellular fatty acid composition in Gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25:41–51
    [Google Scholar]
  28. Moller B., OBmer R., Howard B. H., Gottschalk G., Hippe H. 1984; Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch Microbiol 139:388–396
    [Google Scholar]
  29. Moore L. V. H., Bourne D. M., Moore W. E. C. 1994; Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic Gram-negative bacilli. Int J Syst Bacteriol 44:338–347
    [Google Scholar]
  30. Mullis K. B., Faloona F. 1987; Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350
    [Google Scholar]
  31. Neefs J.-M., van de Peer Y., De Rijk P., Gloris A., De Wachter R. 1991; Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 19:1987–2015
    [Google Scholar]
  32. Ouattara A. S., Traore A. S., Garcia J.-L. 1992; Characterization of Anaerovibrio burkinabensis sp. nov., a lactate-fermenting bacterium isolated from rice field soils. Int J Syst Bacteriol 42:390–397
    [Google Scholar]
  33. Patel B. K. C., Love C. A., Stackebrandt E. 1992; Helix 6 of the 16S rRNA of the bacterium Desulfotomaculum australicum exhibits an unusual structural idiosyncrasy. Nucleic Acids Res 20:5483
    [Google Scholar]
  34. van de Peer Y., Nicolai S., Rijk P. D., Wachter R. D. 1996; Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 24:86–91
    [Google Scholar]
  35. Prins R. A. 1986 Genus X. Anaerovibrio Hungate 1966, 80AL. Bergey’s Manual of Systematic Bacteriology 1653–655 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  36. Prins R. A., Akkermans-Kryswijk J., Franklin-Klein W., Kankhorst A., van Golde L. M. G. 1974; Metabolism of serine and ethanolamine plasmalogens in Megasphaera elsdenii. Biochim Biophys Acta 348:361–369
    [Google Scholar]
  37. Rainey F. A., Ward-Rainey N. L, Janssen P. H., Hippe H., Stackebrandt E. 1996; Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology 142:2087–2095
    [Google Scholar]
  38. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron-opaque stain in electron microcopy. J Cell Biol 17:208–212
    [Google Scholar]
  39. Sadek F., Drucker D. B., Boote V., Bennet K. W., Eley A. 1998; Phospholipids of Fusobacterium spp. J Appl Microbiol 85:302–308
    [Google Scholar]
  40. Schauder R., Schink B. 1989; Anaerovibrio glycerini sp. nov., an anaerobic bacterium fermenting glycerol to propionate, cell matter, and hydrogen. Arch Microbiol 152:473–478
    [Google Scholar]
  41. Schleifer K. H., Leuteritz M., Weiss N., Ludwig W., Kirchhof G., Seidel-Rüfer H. 1990; Taxonomic study of anaerobic, Gramnegative, rod-shaped bacteria from breweries: emended description of Pectinatus cerevisiiphilus and description of Pectina-tus frisingensis sp. nov., Selenomonas lacticifex sp. nov., Zymophilus raffinosivorans gen. nov., sp. nov., and Zymophilus paucivorans sp. nov. Int J Syst Bacteriol 40:19–27
    [Google Scholar]
  42. Shah H. N., Collins M. D., Kroppenstedt R. M. 1983; Biochemical and chemical studies on Bacteroides multiacida and Bacteroides hypermegas. J Appl Bacteriol 55:151–158
    [Google Scholar]
  43. Spurr A. R. 1969; A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 28:31–43
    [Google Scholar]
  44. Stackebrandt E., Pohla H., Kroppenstedt R., Hippe H., Woese C. R. 1985; 16S rRNA analysis of Sporomusa, Selenomonas, and Megasphaera: on the phylogenetic origin of Gram-positive eubacteria. Arch Microbiol 143:270–276
    [Google Scholar]
  45. Stackebrandt E., Sproer C., Rainey F. A., Burghardt J., Pâuker O., Hippe H. 1997; Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desul-fotomaculum guttoideumi and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 41:1134–1139
    [Google Scholar]
  46. Stahl E. 1967 Diinnschichtchromatographie Berlin: Springer;
    [Google Scholar]
  47. Stankewich J. P., Cosenza B. J., Shigo A. L. 1971; Clostridium quercicolum sp. n., isolated from discolored tissues in living oak trees. Antonie Leeuwenhoek 37:299–302
    [Google Scholar]
  48. Stoesser G., Tuli M. A., Lopez R., Sterk P. 1999; The EMBL nucleotide sequence databases. Nucleic Acids Res 27:17–24
    [Google Scholar]
  49. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiology Lett 25:125–128
    [Google Scholar]
  50. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130
    [Google Scholar]
  51. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202
    [Google Scholar]
  52. Tindall B. J. 1996 Respiratory lipoquinones as biomarkers. Molecular Microbial Ecology Manual, supplement 1, section 4.1.51–21 Edited by Akkermans A., de Bruijn F., van Elsas D. Dordrecht: Kluwer;
    [Google Scholar]
  53. Verkley A. J., Ververgaert P. H. J. T., Prins R. A., van Golde L. M. G. 1975; Lipid-phase transitions of the strictly anaerobic bacteria Veillonella parvula and Anaerovibrio lipolytica. J Bacteriol 124:1522–1528
    [Google Scholar]
  54. Watanabe T., Okuda S.-I., Takahashi H. 1982; Physiological importance of even-numbered fatty acids and aldehydes in plasmalogen phospholipids of Selenomonas ruminantium. J Gen Appl Microbiol 28:23–33
    [Google Scholar]
  55. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1861
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1861
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error