1887

Abstract

An anaerobic, extremely thermophilic xylanolytic, non-spore-forming bacterium was isolated from a sediment sample taken from Owens Lake, California, and designated strain OL (T = type strain). Strain OL had a Gram-negative reaction and occurred as short rods which sometimes formed long chains containing a few coccoid cells. It grew at 50--80 °C, with an optimum at 75 °C. The pH range for growth was 5·5--9·0 with an optimum at about pH 7·5. When grown on glucose at optimal conditions, its doubling time was 7·3 h. In addition to glucose, the isolate utilized sucrose, xylose, fructose, ribose, xylan, starch, pectin and cellulose. Yeast extract stimulated growth on carbohydrates but was not obligately required. The end products from glucose fermentation were lactate, acetate, ethanol, H and CO. The G+C content of strain OL was 36·6 mol%. The 16S rDNA sequence analysis indicated that strain OL was a member of the subdivision containing Gram-positive bacteria with DNA G+C content of less than 55 mol% and clustered with members of the genus . Because strain OL is phylogenetically and phenotypically different from other members of this genus, it is proposed to designate this isolate sp. nov. Strain OL is the type strain (=ATCC700167).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-1-91
1998-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/1/ijs-48-1-91.html?itemId=/content/journal/ijsem/10.1099/00207713-48-1-91&mimeType=html&fmt=ahah

References

  1. Andrews K. T., Patel B. K. C. 1996; Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269
    [Google Scholar]
  2. Angelidaki I., Petersen S. P., Ahring B. K. 1990; Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. Appl Microbiol Biotech 33:469–472
    [Google Scholar]
  3. Bergquist P. L., Love D. R., Croft J. E., Streiff M. B., Daniel R. M., Morgan H. W. 1989; Genetics and potential biotechnological application of thermophilic and extremely thermophilic archaebacteria and eubacteria. Biotechnol Gen Eng Rev 5:199–244
    [Google Scholar]
  4. Biely P. 1985; Microbial xylanolytic systems. Trends Biotechnol 3:286–290
    [Google Scholar]
  5. Cold-Ruwisch R. 1985; A quick method for the deter-mination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36
    [Google Scholar]
  6. Cook G. M., Janssen P. H., Morgan H. W. 1991; Endospore formation by Thermoanaerobium brockii HTD4. Syst Appl Microbiol 14:240–244
    [Google Scholar]
  7. Cook G. M., Rainey F. A., Patel B. K. C., Morgan H. W. 1996; Characterization of a new obligately anaerobic thermophile, Thermoanaerobacter wiegelii sp. nov. Int J Syst Bacteriol 46:123–127
    [Google Scholar]
  8. Daniel R. M. 1992; Modern life at high temperatures. Orig Life Evol Biosphere 22:33–42
    [Google Scholar]
  9. Felsentein J. 1993 PHYLIP (Phylogenetic Interference Package) version 3.51c. Department of Genetics University of Washington; Seattle, USA:
    [Google Scholar]
  10. Ferguson T. J., Mah R. A. 1983; Isolation and characterization of an H2-oxidizing thermophilic methanogen. Appl Environ Microbiol 45:265–274
    [Google Scholar]
  11. Gutmann I., Wahlefeld A. W. 1974 l-( + )-Lactate : determination with lactate dehydrogenase and NAD. In Methods of Enzymatic Analysis1464–1468 Bergmeyer H. U. Weinheim: Verlag Chemie;
    [Google Scholar]
  12. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3b:117–132
    [Google Scholar]
  13. Kristjansson J. K., Stetter K. 1992 Thermophilic bacteria. In Thermophilic Bacteria, 19921–18 Kristjansson J. K. Boca Raton, FL: CRC Press;
    [Google Scholar]
  14. Kumar S., Tamura K., Nei M. 1993; MEGA: Molecular Evolutionary Genetic Analysis, version 1.0. The Pennsylvania State University, University Park, PA 16802, USA
    [Google Scholar]
  15. Lamed R., Bayer E., Saha B. C., Zeikus J. G. 1988; Biotechnological potential of enzymes from unique thermophiles. In Proceedings of the 8th International Biotechnology Symposium371–383 Duraned G., Bobo-chon L., Florent J. Paris: French Society for Microbiology:
    [Google Scholar]
  16. Lee Y. E., Jain M. K., Lee C. Y., Lowe S. E., Zeikus J. G. 1993; Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylano- lyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfuro-genes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermanaerobacter ethanolicus. Int J Syst Bacteriol 43:41–51
    [Google Scholar]
  17. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst Appl Microbiol 16:244–251
    [Google Scholar]
  18. Macy J. M., Snellen J. E., Hungate R. E. 1972; Use of syringe methods for anaerobiosis. Am J Clin Nutr 25:1318–1323
    [Google Scholar]
  19. Maidak B. L., Olsen G. J., Larse N., Overbeek R., McGaughey M. J., Woese C. R. 1996; The Ribosomal Database Project. Nucleic Acids Res 24:82–85
    [Google Scholar]
  20. Mladenovska Z., Mathrani I. M., Ahring B. K. 1995; Isolation and characterization of Caldicellulosiruptor lacto- aceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium. Arch Microbiol 163:223–230
    [Google Scholar]
  21. Mathrani I. M., Ahring B. K. 1991; Isolation and characterization of a strictly xylan-degrading Dictyoglomus from a man-made, thermophilic anaerobic environment. Arch Microbiol 157:13–17
    [Google Scholar]
  22. Peinemann-Simon S., Ludwig W., Vogt B., Gottschalk G. 1995; Taxonomic analysis of the thermophilic bacterium strain SP83 producing H2 from starch at 75 °C. Syst Appl Microbiol 18:231–236
    [Google Scholar]
  23. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156
    [Google Scholar]
  24. Preston J. F., Boone D. R. 1973; Analytical determination of the buoyant density of DNA in acrylamide gels after preparative CsCl gradient centrifugation. FEBS Lett 37:321–324
    [Google Scholar]
  25. Rainey F. A., Donnison A. M., Janssen P. H., Saul D., Rodrigo A., Bergquist P. L., Daniel R. M., Stackebrandt E., Morgan H. W. 1994; Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett 120:263–266
    [Google Scholar]
  26. Rainey F. A., Ward N. L., Morgan H. W., Toalster R., Stackebrandt E. 1993; Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J Bacteriol 175:4772–4779
    [Google Scholar]
  27. Redburn A. C., Patel B. K. C. 1993; Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol Lett 113:81–86
    [Google Scholar]
  28. Schildkraut C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol 4:430–443
    [Google Scholar]
  29. Schink B., Zeikus J. G. 1983; Clostridium thermosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate. J Gen Microbiol 129:1149–1158
    [Google Scholar]
  30. Schaeffer A. B., Fulton M. 1993; A simplified method of staining endospores. Science 77:194
    [Google Scholar]
  31. Sober H. A. 1968 Handbook of Biochemistry Cleveland, OH: The Chemical Rubber Company;
    [Google Scholar]
  32. Svetlichnyi V. A., Svetlichnaya T. P., Chernykh N. A., Zavarzin G. A. 1990; Anaerocellum thermophilum, new genus new species an extreme thermophilic cellulolytic eubacterium isolated from hot springs in the Valley of Geysers. Microbiology (English translation of Mikrobio- logiyd) 59:871–879
    [Google Scholar]
  33. Wiegel J., Mothershed C. P., Puls J. 1985; Differences in xylan degradation by various noncellulolytic thermophilic anaerobes and Clostridium thermocellum. Appl Environ Microbiol 49:656–659
    [Google Scholar]
  34. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 13:161–165
    [Google Scholar]
  35. Zeikus J. G. 1979; Thermophilic bacteria: ecology, physiology and technology. Enzyme Microb Technol 1:243–252
    [Google Scholar]
  36. Zeikus J. G., Ben-Bassat A., Hegge P. W. 1980; Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol 143:432–440
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-1-91
Loading
/content/journal/ijsem/10.1099/00207713-48-1-91
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error