1887

Abstract

We studied the purine enzyme activities in dialyzed cytoplasmic extracts from the following eight species, representing four genera, of FH (T = type strain) and M129, PG-11, PG-21 and 1620, G-37, J, T960, Maroc-R8A2, and 5LA. In an investigation of purine nucleoside kinase activity we also included 13408, 10144, 13428, 1612, 1184, and Botte. All of these species except had purine phosphoribosyltransferase activity for adenine, hypoxanthine, and guanine; had only adenine phosphoribosyltransferase activity. All of the organisms had nucleoside phosphorylase activity which used either ribose 1-phosphate or deoxyribose 1-phosphate and adenine, hypoxanthine, or guanine for the synthesis of nucleosides and adenosine, deoxyadenosine, guanosine, deoxyguanosine, inosine, or deoxyinosine in the reverse direction. All had 5′-nucleotidase activity for adenosine monophosphate, deoxyadenosine monophosphate, inosine monophosphate, or guanosine monophosphate. Only 1620, 13408, 10144, and 13428, , and had pyrophosphate-dependent nucleoside kinase activity. Only had nucleoside kinase activity with adenosine triphosphate and deoxyguanosine. We studied pyrimidine enzyme activities in all of the species except and . All of the species assayed had thymidine, thymidylate, and deoxycytidine kinase and thymidine and uridine phosphorylase activities. All of the spp. had deoxycytotidine monophosphate and cytidine-deoxycytidine deaminase activities. All of the spp. and lacked deoxyuridine triphosphatase activity. lacked deoxycytidine monophosphate deaminase activity, but otherwise it resembled all of the spp. and differed from each other and from spp. and in the patterns of pyrimidine enzyme activities. Pyrophosphate-dependent nucleoside kinase activity was the most variably detected activity. None of the spp. except four of eight strains of had this kinase activity. Likewise, did not have the pyrophosphate-dependent nucleoside kinase activity; however, and did have this enzyme activity. The absence of deoxyuridine triphosphatase activity in all spp. may be related to their proposed rapid evolution and the relative lack of conserved sequences in their 5S ribosomal ribonucleic acids.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-38-4-417
1988-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/38/4/ijsem-38-4-417.html?itemId=/content/journal/ijsem/10.1099/00207713-38-4-417&mimeType=html&fmt=ahah

References

  1. Andersen H., Birkelund S., Christiansen G., Freundt E. A. 1987; Electrophoretic analysis of proteins from Mycoplasma hominis strains detected by SDS-PAGE, two-dimensional gel electrophoresis and immunoblotting. J. Gen. Microbiol. 133:181–191
    [Google Scholar]
  2. Barile M. F., Grabowski M. W., Stephens E. B., O’Brien S. J., Simonson J. M., Izumikawa K., Chandler D. K. F., Taylor-Robinson D., Tully J. G. 1983; Mycoplasma hominis-tissue cell interactions: a review with new observations on phenotypic and genotypic properties. Sex. Transm. Dis. 10:345–354
    [Google Scholar]
  3. Beaman K. D., Pollack J. D. 1981; Adenylate energy charge in Acholeplasma laidlawii. J. Bacteriol. 146:1055–1058
    [Google Scholar]
  4. Chen T. A., Wells J. M., Liao C. H. 1982 Cultivation in vitro: spiroplasmas, plant mycoplasmas, and other fastidious walled prokaryotes. 417–446 Mount M. S., Lacy G. H.ed Phytopathogenic prokaryotes 2 Academic Press, Inc.; New York:
    [Google Scholar]
  5. Cheng Y.-C., Dornin B., Lee L.-S. 1977; Human deoxycytidine kinase. Purification and characterization of the cytoplasmic and mitochondrial isoenzymes derived from blast cells of acute myelocytic leukemia patients. Biochim. Biophys. Acta 481:481–492
    [Google Scholar]
  6. Christiansen C., Erno H. 1982; Classification of the F38 group of caprine mycoplasma strains by DNA hybridization. J. Gen. Microbiol. 128:2523–2526
    [Google Scholar]
  7. Christiansen G., Andersen H. 1988; Heterogeneity among Mycoplasma hominis strains as detected by probes containing parts of ribosomal ribonucleic acid genes. Int. J. Syst. Bacteriol. 38:108–115
    [Google Scholar]
  8. Davis J. W. Jr., Moses I. S., Ndubuka C., Ortiz R. 1987; Inorganic pyrophosphatase activity in cell-free extracts of Ureaplasma urealyticum. J. Gen. Microbiol. 133:1453–1459
    [Google Scholar]
  9. Durham J. P., Ives D. H. 1970; Deoxycytidine kinase. II. Purification and general properties of the calf thymus enzyme. J. Biol. Chern. 245:2276–2284
    [Google Scholar]
  10. Fersht A. R., Knill-Jones J. W. 1981; DNA polymerase accuracy and spontaneous mutation rates: frequencies of purine • purine, purine • pyrimidine and pyrimidine • pyrimidine mismatches during DNA replication. Proc. Natl. Acad. Sci. USA 78:4251–4255
    [Google Scholar]
  11. Freundt E. 1983; Principles of mycoplasma classification and taxonomy. Methods Mycoplasmol. 1:9–13
    [Google Scholar]
  12. Friis N. F. 1975; Some recommendations concerning primary isolation of Mycoplasma suipneumoniae and Mycoplasma flocculare: a survey. Nord. Veterinaermed. 27:337–339
    [Google Scholar]
  13. Harnet M., Bonissol C., Carter P. 1980; Enzymatic activity on purine and pyrimidine metabolism in nine Mycoplasma species contaminating cell cultures. Clin. Chim. Acta 103:15–22
    [Google Scholar]
  14. Harris H., Hopkinson D. A. 1976 Handbook of enzyme electrophoresis in human genetics. North-Holland Publishing Co.; Amsterdam:
    [Google Scholar]
  15. Hatanaka M., Del Giudice R., Long C. 1975; Adenine formation from adenosine by mycoplasmas: adenosine phosphorylase activity. Proc. Natl. Acad. Sci. USA 72:1401–1405
    [Google Scholar]
  16. Hollingdale M. R., Lem eke R. M. 1970; Antigenic differences within the species of Mycoplasma hominis. J. Hyg. 68:469–477
    [Google Scholar]
  17. Lipman R. P., Clyde W. A. Jr., Denny F. W. 1969; Characteristics of virulent, attenuated, and avirulent Mycoplasma pneumoniae strains. J. Bacteriol. 100:1037–1043
    [Google Scholar]
  18. Loeb L. A., Kunkel T. A. 1982; Fidelity of DNA synthesis. Annu. Rev. Biochem. 52:429–457
    [Google Scholar]
  19. McElwain M. C., Pollack J. D. 1987; Synthesis of deoxyribomononucleotides in Mollicutes: dependence on deoxyribose-l-phosphate and PP;. J. Bacteriol. 169:3647–3653
    [Google Scholar]
  20. McElwain M. C., Williams M. V., Pollack J. D. 1988; Adenine-specific R-1-P-, dR-1-P-, and X-l-P-accepting, purine nucleoside phosphorylase of Acholeplasma laidlawii B-PG9. J. Bacteriol. 170:564–567
    [Google Scholar]
  21. McGarrity G. J., Gamon L., Steiner T., Tully J., Kotani H. 1985; Uridine phosphorylase activity among the class Mollicutes. Curr. Microbiol. 12:107–112
    [Google Scholar]
  22. Mclvor R. S., Kenny G. E. 1978; Differences in incorporation of nucleic acid bases and nucleosides by various Mycoplasma and Acholeplasma species. J. Bacteriol. 135:483–489
    [Google Scholar]
  23. Mclvor R. S., Wohlhueter R. M., Plageman P. G. W. 1983; Uracil phosphoribosyltransferase from Acholeplasma laidlawii: partial purification and kinetic properties. J. Bacteriol. 156:192197
    [Google Scholar]
  24. Mclvor R. S., Wohlhueter R. M., Plageman P. G. W. 1983; Uridine phosphorylase from Acholeplasma laidlawii: purification and kinetic properties. J. Bacteriol. 156:198–204
    [Google Scholar]
  25. Mitchell A., Finch L. R. 1977; Pathways of nucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides. J. Bacteriol. 130:1047–1054
    [Google Scholar]
  26. Neale G. A. M., Mitchell A., Finch L. R. 1983; Pathways of pyrimidine deoxyribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides. J. Bacteriol. 154:17–22
    [Google Scholar]
  27. Neale G. A. M., Mitchell A., Finch L. R. 1984; Uptake and utilization of deoxynucleoside 5′-monophosphates by Mycoplasma mycoides subsp. mycoides. J. Bacteriol. 158:943–947
    [Google Scholar]
  28. O’Brien S. J., Simonson J. M., Razin S., Barile M. F. 1983; On the distribution and characteristics of isozyme expression in Mycoplasma, Acholeplasma and Ureaplasma species. Yale J. Biol. Med. 56:701–708
    [Google Scholar]
  29. Pollack J. D. 1983; Localization of enzymes in mycoplasma: preparatory steps. Methods Mycoplasmol. 1:327–332
    [Google Scholar]
  30. Pollack J. D., Tryon V. V., Beaman K. D. 1983; The metabolic pathways of Acholeplasma and Mycoplasma: an overview. Yale J. Biol. Med. 56:709–716
    [Google Scholar]
  31. Pollack J. D., Williams M. V. 1986; PPrdependent phosphofructotransferase (phosphofructokinase) activity in the Mollicutes (mycoplasma) Acholeplasma laidlawii. J. Bacteriol. 165:53–60
    [Google Scholar]
  32. Razin S. 1983; Cell lysis and isolation of membranes. Methods Mycoplasmol. 1:225–233
    [Google Scholar]
  33. Robinson I. M. 1979 Special features of anaeroplasmas. 515–528 Barile M. F., Razin S.ed The mycoplasmas, vol. 1 Cell biology Academic Press, Inc.; New York:
    [Google Scholar]
  34. Rogers M. J., Simmons J., Walker R. T., Weisburg W. G., Woese C. R., Tanner R. S., Robinson I. M., Stahl D. A., Olsen G., Leach R. H., Maniloff J. 1985; Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data. Proc. Natl. Acad. Sci. USA 82:1160–1164
    [Google Scholar]
  35. Schaaper R. M., Kunkel T. A., Loeb L. A. 1983; Infidelity of DNA synthesis associated with bypass of apurinic sites. Proc. Natl. Acad. Sci. USA 80:487–491
    [Google Scholar]
  36. Slavik M. F., Switzer W. P. 1972; Development of a microtitration complement fixation test for diagnosis of mycoplasmal swine pneumonia. Iowa State J. Res. 47:117–128
    [Google Scholar]
  37. Sneller M., Wellbourne F., Barile M. F., Platz P. 1986; Prosthetic joint infection with Mycoplasma hominis. J. Infect. Dis. 153:174–175
    [Google Scholar]
  38. Tryon V. V., Pollack J. D. 1984; Purine metabolism in Acholeplasma laidlawii B: novel PPrdependent nucleoside kinase activity. J. Bacteriol. 159:265–270
    [Google Scholar]
  39. Tryon V. V., Pollack J. D. 1985; Distinctions in Mollicutes purine metabolism: pyrophosphate-dependent nucleoside kinase and dependence on guanylate salvage. Int. J. Syst. Bacteriol. 35:497–501
    [Google Scholar]
  40. Williams M. V., Pollack J. D. 1985; Pyrimidine deoxyribonucleotide metabolism in members of the class Mollicutes. Int. J. Syst. Bacteriol. 35:227–230
    [Google Scholar]
  41. Williams M. V., Pollack J. D. 1985; Pyrimidine deoxyribonucleotide metabolism in Acholeplasma laidlawii B-PG9. J. Bacteriol. 161:1029–1033
    [Google Scholar]
  42. Williams M. V., Pollack J. D. 1988 Uracil-DNA glycosylase activity: relationship to proposed biased mutation pressure in the class Mollicutes. Moses R. E., Summers W.ed DNA replication and mutagenesis American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  43. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221271
    [Google Scholar]
  44. Woese C. R., Stackebrandt E., Ludwig W. 1985; What are mycoplasmas: the relationship of tempo and mode in bacterial evolution. J. Mol. Evol. 21:305–316
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-38-4-417
Loading
/content/journal/ijsem/10.1099/00207713-38-4-417
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error