Abstract

Background and Aims Seed desiccation sensitivity limits the ex situ conservation of up to 47 % of plant species, dependent on habitat. Whilst desirable, empirically determining desiccation tolerance levels in seeds of all species is unrealistic. A probabilistic model for the rapid identification of woody species at high risk of displaying seed desiccation sensitivity is presented.

Methods The model was developed using binary logistic regression on seed trait data [seed mass, moisture content, seed coat ratio (SCR) and rainfall in the month of seed dispersal] for 104 species from 37 families from a semi-deciduous tropical forest in Panamá.

Key Results For the Panamanian species, only seed mass and SCR were significantly related to the response to desiccation, with the desiccation-sensitive seeds being large and having a relatively low SCR (i.e. thin ‘seed’ coats). Application of this model to a further 38 species, of known seed storage behaviour, from two additional continents and differing vegetation types (dryland Africa and temperate Europe) correctly predicted the response to desiccation in all cases, and resolved conflicting published data for two species (Acer pseudoplatanus and Azadirachta indica).

Conclusions This model may have application as a decision-making tool in the handling of species of unknown seed storage behaviour in species from three disparate habitats.

INTRODUCTION

Based on their response to desiccation, seeds can be divided into two main groups, orthodox (hereafter desiccation-tolerant) and recalcitrant (hereafter desiccation-sensitive). Desiccation-sensitive seeds cannot tolerate removal of bound water without viability loss and show signs of dehydration stress when ‘free’ water is being removed (Pritchard and Manger, 1998; Pammenter and Berjak, 1999; Black and Pritchard, 2002). In addition, since desiccation-sensitive seeds cannot be dried, storage is only possible for short periods of time (generally in the order of weeks to months) and they therefore pose a significant challenge for ex situ conservation.

The first challenge for the conservation of seeds of desiccation-sensitive species is to determine their response to desiccation. This can be achieved either passively by routine processing of seeds for long-term conservation and identifying species that fail to survive, or more actively by specific, targeted screening using, for example, 100 seeds (Pritchard et al., 2004a) or by fully characterizing the response to dehydration of individual species (e.g. Hong and Ellis, 1996). Using these approaches, approx. 540 species with desiccation-sensitive seeds have been identified to date (Flynn et al., 2004), although it has been estimated that this trait could be present in approx. 8 % (20 000 species) of the world's flowering plants (Dickie and Pritchard, 2002). As it is unlikely that all of these species will ever be identified through experimental determinations, a second approach to desiccation tolerance investigations is needed that identifies reliable and robust correlates of seed desiccation sensitivity, leading to the development of a predictive framework for seed storage responses.

A number of studies have investigated potential correlates of seed desiccation sensitivity, including seed mass (Hong and Ellis, 1998; Dickie and Pritchard, 2002; Pritchard et al., 2004b), seed shape (Tompsett, 1984, 1987; Hong and Ellis, 1997), seed moisture content at shedding (Hong and Ellis, 1998), seed germination rates (Pritchard et al., 2004b; Daws et al., 2005), seed allocation to physical defence [ratio of endocarp and testa mass to dispersal unit mass, i.e. ‘seed’ coat ratio (SCR); Pritchard et al., 2004b; Daws et al., 2005] and both gross and local-scale habitat variables (Hong and Ellis, 1998; Dussert et al., 2000; Tweddle et al., 2003; Pritchard et al., 2004b; Daws et al., 2005). These studies have generally shown that desiccation-sensitive seeds are large (greater than approx. 0·5 g), spherical to spheroid, shed at high water contents, germinate rapidly, have thin seed coats (low SCR) and are more frequent in wet habitats (e.g. tropical rain forests), or are shed in wetter periods in drier habitats. However, many of these studies have been based on species from a limited taxonomic grouping such as a single family (e.g. Meliaceae; Hong and Ellis, 1998) or genus (e.g. Coffea; Dussert et al., 2000) and therefore do not provide a general framework for predicting desiccation sensitivity in phylogenetically diverse species. More recently, Daws et al. (2005) have shown that seed mass, SCR and the timing of seed dispersal are all correlated with desiccation sensitivity across a range of diverse species from semi-deciduous tropical forest in Panamá. In addition, they demonstrated an evolutionary association between desiccation sensitivity and both large seed mass and ‘thin’ seed coats. Consequently, these traits may provide a framework for developing a widely applicable model for predicting the likelihood of desiccation sensitivity.

In this study, data for 104 woody plant species from 37 families from one habitat type, semi-deciduous tropical forest in Panamá, Central America, were used to assess the usefulness of several traits that have previously been suggested as correlates of desiccation sensitivity: seed mass, SCR, total rainfall in the month of seed shed and seed water content at shedding. These traits were selected because they are both readily comparable between species and can be easily determined. Subsequently, the wider applicability of this model was tested by validation using 38 tree species from two different continents and differing vegetation types, African dryland trees and European temperate deciduous forest species.

MATERIALS AND METHODS

Study site and species

Ripe fruits/seeds, at the point of natural dispersal, were collected from 104 woody species between 1985 and 1989 from Barro Colorado Island (BCI), Republic of Panamá (9 °10′N, 79 °51′W) (see Daws et al., 2005 for details). Nomenclature follows the Flora of Panama Checklist (D'Arcy, 1987). Vegetation on BCI consists of semi-deciduous tropical forest, and has been described in detail elsewhere (Leigh et al., 1982). Rainfall on BCI averages 2600 mm year−1, with a pronounced dry season between January and April (Dietrich et al., 1982). Precipitation on BCI was measured using a rain gauge for the period 1981 to 2002. Fleshy fruits were cleaned within 2 d of collection by removing the fleshy pulp: no cleaning was necessary for wind-dispersed seeds and those in dry, dehiscent pods. For each species, the month of seed collection was recorded and seed dry mass and water content determined by drying about 10 cleaned seeds per species (with fruit tissue removed) at 60 °C for 3 d.

Data on seed desiccation tolerance were collated from Release 6 of the Royal Botanic Gardens Kew's online Seed Information Database (SID; Flynn et al., 2004). Seed responses to desiccation are divided into three categories in SID: orthodox (desiccation-tolerant); recalcitrant (desiccation-sensitive); and intermediate (Ellis et al., 1990). Intermediate seeds, which account for just 2 % of the SID, tolerate the removal of all free water and consequently are, in this context, desiccation tolerant (see Black and Pritchard, 2002; Pritchard, 2004). Species in our data set were assigned to these two, broad seed storage categories, resulting in 75 desiccation-tolerant (none of which were listed as intermediate) and 29 desiccation-sensitive taxa.

Determination of allocation to defence

For species in the Panamanian data set and the 38 African and European species used for model validation, a minimum of eight individual seeds (dispersal unit) were dissected into their component parts: endocarp/testa and embryo/endosperm. These component parts were subsequently dried at 103 °C for 17 h (ISTA, 1999) followed by mass determinations. To calculate the allocation to defence (SCR), the ratio of the mass of covering structures (endocarp and testa) to the mass of the total dispersal unit was determined (Grubb and Burslem, 1998; Pritchard et al., 2004b). In addition, for the African and European species, these data were used to determine seed dry mass. Seed mass and SCR of the Panamanian species are reported in Appendix 1 (Daws et al., 2005); that of the African and European species are reported in Table 2.

Statistical analyses

For the Panamanian data set of 104 species, binary logistic regression implemented in Minitab 13 (Minitab Inc., State College, PA, USA) was used to examine the probability of seed desiccation tolerance or sensitivity with respect to: (a) log10 oven dry seed mass (g); (b) SCR; (c) mean (for the period 1981–2002) rainfall in the month of seed dispersal (mm); and (d) seed water content at shedding (% fresh mass basis). Since the relationship between water content on a fresh and dry mass basis is not linear, analyses were also conducted on a dry mass basis: this had no significant effect on the results and consequently data are only presented on a fresh mass basis.

Two approaches were used to develop the logistic model. First, the contribution of each main factor to the logistic model was tested by removing that term from the full model (the model including all four main terms). The significance of the difference between the log-likelihood of the reduced and full model was tested using a log-likelihood test where G = 2(logLfull – logLreduced), and G is distributed as χ2 with 1 d.f., to determine the significance of the change in log-likelihood after addition of each term (Tabachnick and Fidell, 2001). This approach is equivalent to testing for the significance in the change in residual deviance between regression models. Subsequently, for the two significant main terms, the significance of their interaction was tested by comparing the log-likelihood of the full model (two main terms and their interaction) with a reduced model including only the two main terms. Secondly, a forward selection approach to model development was followed. Thus, we assessed whether adding each of the factors in turn to the null model (i.e. a model containing none of the factors) had a significant effect (as assessed using log-likelihood tests). Subsequently, the effect of adding in second terms to the most significant single factor was tested, followed by the effect of adding in third terms to the most significant two-factor model, with a P < 0·05 criterion for inclusion until no further terms could be added. Having determined the logistic model, the significance of adding in the possible interaction term was tested. Since both approaches resulted in the same main terms in the final logistic model, only results for the first approach are presented.

Several approaches were used to validate the model generated from the logistic analysis. First, cross-validation of the model was conducted by comparing the prediction for the probability of desiccation sensitivity with the actual response to desiccation for each of the 104 species. This was achieved by computing the logistic model omitting the species in question and then entering the seed trait data for that species into the resulting model. Secondly, for all 104 species, we tested whether the logistic model correctly predicted their response to desiccation, by entering seed trait data for each species in turn into Equation 1 (i.e. using all 104 species to generate the logistic model). Thirdly, seed trait data for an additional 38 species from Africa and Europe with known responses to desiccation were entered into the model to generate a probability of each species having desiccation-sensitive seeds. In all three cases, the model was categorized as correctly predicting the response to drying for desiccation-sensitive species when the predicted probability was >0·5 (i.e. seeds are more likely to be desiccation sensitive than tolerant) and for desiccation-tolerant species when the probability was <0·5 (i.e. seeds are more likely to be desiccation tolerant than sensitive). Thus, in principle, a species with a P(D – S) = 0·50 is just as likely to be desiccation sensitive as tolerant.

RESULTS

Panamanian species

Logistic regression, using both forward- and reverse-fit approaches to model development, indicated that for this sample of Panamanian species only two traits, i.e. seed mass and SCR, significantly contributed to the logistic model explaining species' responses to desiccation (P < 0·001; Table 1). In addition, since there were no significant correlations between any of the four predictor variables (P > 0·05), these two variables are likely to be robust predictors of the response to desiccation. The desiccation-sensitive species had a mean seed mass of 1040 mg and an SCR of 0·209; in contrast, the desiccation-tolerant species had a mean seed mass and SCR of 10 mg and 0·509, respectively. Thus, the desiccation-sensitive species had large seeds with ‘thin’ seed coats (low SCR). In contrast, the desiccation-tolerant species had seeds that could span the entire seed mass range, and had SCRs spanning almost the entire observed range, except for the largest seeds which tended to have a higher SCR than desiccation-sensitive seeds of equivalent mass (Fig. 1).

Fig. 1.

The effect of seed mass and seed coat ratio on seed desiccation tolerance of 104 Panamanian woody (tree and shrub) species. Open symbols correspond to species with desiccation-tolerant seeds, closed symbols to species with desiccation-sensitive seeds. The dashed line corresponds to a probability of desiccation sensitivity of 0·5, i.e. the point at which, based on the logistic analysis (eqn 1), seeds are equally likely to be desiccation sensitive or tolerant.

Table 1.

Log-likelihood ratio tests for each three-parameter reduced logistic model (B) compared with the full four-parameter model (A) for the probability of seed desiccation sensitivity. Subsequently, the reduced model (D), from which the one possible two-way interaction was removed, was compared with the full model (C), which included seed mass, SCR and their interaction term

Test
Term removed from the full model
Log-likelihood
Log-likelihood test: 2 (log Lfull – log Lreduced)
ANone−24·791N/A
BSCR−38·10126·620***
BRainfall−24·8460·110 NS
BSeed mass−35·73921·896***
BWater content−26·5943·606 NS
CNone−26·395N/A
DSCR, seed mass27·7292·668 NS
Test
Term removed from the full model
Log-likelihood
Log-likelihood test: 2 (log Lfull – log Lreduced)
ANone−24·791N/A
BSCR−38·10126·620***
BRainfall−24·8460·110 NS
BSeed mass−35·73921·896***
BWater content−26·5943·606 NS
CNone−26·395N/A
DSCR, seed mass27·7292·668 NS

Values for the log-likelihood test are presented for each reduced model, compared with the full model, in addition to the associated P-value for χ2 with d.f. = 1.

***

P < 0·001, NS = not significant (P > 0·05)·

Table 1.

Log-likelihood ratio tests for each three-parameter reduced logistic model (B) compared with the full four-parameter model (A) for the probability of seed desiccation sensitivity. Subsequently, the reduced model (D), from which the one possible two-way interaction was removed, was compared with the full model (C), which included seed mass, SCR and their interaction term

Test
Term removed from the full model
Log-likelihood
Log-likelihood test: 2 (log Lfull – log Lreduced)
ANone−24·791N/A
BSCR−38·10126·620***
BRainfall−24·8460·110 NS
BSeed mass−35·73921·896***
BWater content−26·5943·606 NS
CNone−26·395N/A
DSCR, seed mass27·7292·668 NS
Test
Term removed from the full model
Log-likelihood
Log-likelihood test: 2 (log Lfull – log Lreduced)
ANone−24·791N/A
BSCR−38·10126·620***
BRainfall−24·8460·110 NS
BSeed mass−35·73921·896***
BWater content−26·5943·606 NS
CNone−26·395N/A
DSCR, seed mass27·7292·668 NS

Values for the log-likelihood test are presented for each reduced model, compared with the full model, in addition to the associated P-value for χ2 with d.f. = 1.

***

P < 0·001, NS = not significant (P > 0·05)·

Based on the parameter estimates from the logistic analysis for the Panamanian species, the best logistic model for predicting the likelihood of desiccation sensitivity was:
\[P\left(\mathrm{Desiccation}\ {-}\ \mathrm{sensitivity}\right)\ =\ \frac{e^{3.269\ {-}\ 9.974a\ +\ 2.156\ b}}{1\ +\ e^{3.269\ {-}\ 9.974a\ +\ 2.156b}}\]
where a is SCR and b is log10(seed mass) in g. The standard errors of the parameter estimates were 0·923, 2·653 and 0·564 for the constant, seed mass and SCR terms, respectively. Equation 1 yields a response surface for every combination of seed mass (0·01 mg to 24 g) and SCR (0 to 1) in the Panamanian sample which is the probability of a species having desiccation-sensitive seeds (Fig. 2). The response surface can be used to determine rapidly the probability of a species having desiccation-sensitive seeds. Thus, for example, as seed mass increases from 0·01 mg to 10 g (with an SCR of 0·2), the probability of desiccation sensitivity increases from 7·441 × 10−5 to 0·969. Similarly, as the SCR increases from 0 to 1 (with a seed mass of 1 g), the probability of seed desiccation sensitivity decreases from 0·963 to 0·001.
Fig. 2.

The probability of seed desiccation sensitivity in relation to seed mass and seed coat ratio based on the logistic analysis using 104 Panamanian woody species (Equation 1).

On a species by species basis, both cross-validation of our model, and the application of Equation 1 to the Panamanian species used to produce the model, resulted in 90 of the 104 species having their response to desiccation correctly assigned, a success rate of 87 % (see Appendix 1 for probabilities and species assignments). Both the models produced when dropping each species in turn and Equation 1 incorrectly assigned the same 14 species. This suggests that Equation 1 is robust and not unduly sensitive to the omission of particular species. In Fig. 1, the incorrectly assigned desiccation-sensitive and -tolerant species can be seen as closed symbols to the left of, and open symbols to the right of, the dashed P = 0·50 line, respectively.

Subsequently, this model (Equation 1) was applied to 10 species from Western Europe and 28 species from Africa (including a preponderance of dryland species). In all cases, including two species for which there has been uncertainty over their seed storage behaviour (Acer pseudoplatanus and Azadirachta indica), the model correctly predicted the seed response to desiccation when compared with published data on the physiological response of seeds to drying (Table 2).

Table 2.

African and European tree species used for model validation, including family (names lack the -aceae suffix), their response to desiccation and their probability of having desiccation-sensitive seeds [P(D–S)] based on their seed mass and seed coat ratio (SCR) usingEquation 1

Species
Family
Country
Seed mass (mg)
SCR
P(D – S)
DS/DT?
Europe
    Acer platanoidesAcer-UK1250·5090·023DT1
    Acer pseudoplatanusAcer-Italy1330·3710·089DT2, DS2,3,4,5
    Aesculus hippocastanumHippocastan-UK64370·1900·958DS1
    Carpinus betulifoliaBetul-UK44·30·7990·001DT1
    Castanea sativaFag-France30260·2000·910DS1
    Corylus avellanaBetul-UK12620·5370·134DT1
    Fagus sylvaticaFag-UK2060·3210·196DT1
    Juglans regiaJugland-UK111000·6560·265DT1
    Pinus sylvestrisPin-UK9·50·2340·031DT1
    Quercus roburFag-UK22850·1900·895DS1
Africa
    Anogeissus leiocarpusCombret-Burkina Faso7·30·630<0·001DT1
    Azadiracta indicaMeli-Burkina Faso4900·8000·005DT6, DS7,8
    Azanza garckeanaMalv-Kenya2450·6200·014DT1
    Carapa proceraMeli-Mali10230·3320·894DS1
    Cola cordifoliaMalv-Burkina Faso16870·1170·930DS1
    Cola nitidaMalv-Côte d'Ivoire64720·0750·986DS1
    Dovyalis caffraFlacourti-Kenya170·3250·022DT1
    Erythroxylum emarginayumErythroxyl-Malawi56·60·2600·118DT1
    Garcinia huillensisClusi-Malawi16300·3590·536DS1
    Khaya senegalensisMeli-Burkina Faso1780·3190·178DT1
    Kigelia africanaBignoni-Burkina Faso710·7100·002DT1
    Lannea microcarpaAnacardi-Burkina Faso1350·3690·092DT1
    Memecylon flavovirensMelastomat-Malawi2890·4950·056DT1
    Prunus africanaRos-Kenya1130·2200·276DT1
    Pterocarpus lucensFab-Burkina Faso1960·886<0·001DT1
    Sclerocarya birreaAnacardi-Kenya33800·8810·012DT1
    Sterculia quinquelobaMalv-Malawi8000·4300·226DT1
    Strychnos cocculoidesLogani-Tanzania1910·2720·270DT1
    Syzygium cuminiMyrt-Tanzania6810·0760·896DS1
    Syzygium guineensisMyrt-Malawi4150·0900·825DS1
    Terminalia avicennoidesCombret-Burkina Faso3130·939<0·001DT1
    Terminalia macropteraCombret-Burkina Faso4680·9090·001DT1
    Trichilia emeticaMeli-Kenya6980·1390·824DS1
    Vitellaria paradoxaSapot-Burkina Faso47000·2350·915DS1
    Widdringtonia whyteiCupress-Malawi120·2600·030DT1
    Ximenia americanaOlac-Tanzania6210·3580·321DT1
    Zanha africanaSapind-Malawi9100·0360·944DS1
    Ziziphus mauritaniaRhamn-Burkina Faso2980·8440·002DT1
Species
Family
Country
Seed mass (mg)
SCR
P(D – S)
DS/DT?
Europe
    Acer platanoidesAcer-UK1250·5090·023DT1
    Acer pseudoplatanusAcer-Italy1330·3710·089DT2, DS2,3,4,5
    Aesculus hippocastanumHippocastan-UK64370·1900·958DS1
    Carpinus betulifoliaBetul-UK44·30·7990·001DT1
    Castanea sativaFag-France30260·2000·910DS1
    Corylus avellanaBetul-UK12620·5370·134DT1
    Fagus sylvaticaFag-UK2060·3210·196DT1
    Juglans regiaJugland-UK111000·6560·265DT1
    Pinus sylvestrisPin-UK9·50·2340·031DT1
    Quercus roburFag-UK22850·1900·895DS1
Africa
    Anogeissus leiocarpusCombret-Burkina Faso7·30·630<0·001DT1
    Azadiracta indicaMeli-Burkina Faso4900·8000·005DT6, DS7,8
    Azanza garckeanaMalv-Kenya2450·6200·014DT1
    Carapa proceraMeli-Mali10230·3320·894DS1
    Cola cordifoliaMalv-Burkina Faso16870·1170·930DS1
    Cola nitidaMalv-Côte d'Ivoire64720·0750·986DS1
    Dovyalis caffraFlacourti-Kenya170·3250·022DT1
    Erythroxylum emarginayumErythroxyl-Malawi56·60·2600·118DT1
    Garcinia huillensisClusi-Malawi16300·3590·536DS1
    Khaya senegalensisMeli-Burkina Faso1780·3190·178DT1
    Kigelia africanaBignoni-Burkina Faso710·7100·002DT1
    Lannea microcarpaAnacardi-Burkina Faso1350·3690·092DT1
    Memecylon flavovirensMelastomat-Malawi2890·4950·056DT1
    Prunus africanaRos-Kenya1130·2200·276DT1
    Pterocarpus lucensFab-Burkina Faso1960·886<0·001DT1
    Sclerocarya birreaAnacardi-Kenya33800·8810·012DT1
    Sterculia quinquelobaMalv-Malawi8000·4300·226DT1
    Strychnos cocculoidesLogani-Tanzania1910·2720·270DT1
    Syzygium cuminiMyrt-Tanzania6810·0760·896DS1
    Syzygium guineensisMyrt-Malawi4150·0900·825DS1
    Terminalia avicennoidesCombret-Burkina Faso3130·939<0·001DT1
    Terminalia macropteraCombret-Burkina Faso4680·9090·001DT1
    Trichilia emeticaMeli-Kenya6980·1390·824DS1
    Vitellaria paradoxaSapot-Burkina Faso47000·2350·915DS1
    Widdringtonia whyteiCupress-Malawi120·2600·030DT1
    Ximenia americanaOlac-Tanzania6210·3580·321DT1
    Zanha africanaSapind-Malawi9100·0360·944DS1
    Ziziphus mauritaniaRhamn-Burkina Faso2980·8440·002DT1

Desiccation-sensitive (DS) species are shown in bold type font. DT, desiccation tolerant.

Table 2.

African and European tree species used for model validation, including family (names lack the -aceae suffix), their response to desiccation and their probability of having desiccation-sensitive seeds [P(D–S)] based on their seed mass and seed coat ratio (SCR) usingEquation 1

Species
Family
Country
Seed mass (mg)
SCR
P(D – S)
DS/DT?
Europe
    Acer platanoidesAcer-UK1250·5090·023DT1
    Acer pseudoplatanusAcer-Italy1330·3710·089DT2, DS2,3,4,5
    Aesculus hippocastanumHippocastan-UK64370·1900·958DS1
    Carpinus betulifoliaBetul-UK44·30·7990·001DT1
    Castanea sativaFag-France30260·2000·910DS1
    Corylus avellanaBetul-UK12620·5370·134DT1
    Fagus sylvaticaFag-UK2060·3210·196DT1
    Juglans regiaJugland-UK111000·6560·265DT1
    Pinus sylvestrisPin-UK9·50·2340·031DT1
    Quercus roburFag-UK22850·1900·895DS1
Africa
    Anogeissus leiocarpusCombret-Burkina Faso7·30·630<0·001DT1
    Azadiracta indicaMeli-Burkina Faso4900·8000·005DT6, DS7,8
    Azanza garckeanaMalv-Kenya2450·6200·014DT1
    Carapa proceraMeli-Mali10230·3320·894DS1
    Cola cordifoliaMalv-Burkina Faso16870·1170·930DS1
    Cola nitidaMalv-Côte d'Ivoire64720·0750·986DS1
    Dovyalis caffraFlacourti-Kenya170·3250·022DT1
    Erythroxylum emarginayumErythroxyl-Malawi56·60·2600·118DT1
    Garcinia huillensisClusi-Malawi16300·3590·536DS1
    Khaya senegalensisMeli-Burkina Faso1780·3190·178DT1
    Kigelia africanaBignoni-Burkina Faso710·7100·002DT1
    Lannea microcarpaAnacardi-Burkina Faso1350·3690·092DT1
    Memecylon flavovirensMelastomat-Malawi2890·4950·056DT1
    Prunus africanaRos-Kenya1130·2200·276DT1
    Pterocarpus lucensFab-Burkina Faso1960·886<0·001DT1
    Sclerocarya birreaAnacardi-Kenya33800·8810·012DT1
    Sterculia quinquelobaMalv-Malawi8000·4300·226DT1
    Strychnos cocculoidesLogani-Tanzania1910·2720·270DT1
    Syzygium cuminiMyrt-Tanzania6810·0760·896DS1
    Syzygium guineensisMyrt-Malawi4150·0900·825DS1
    Terminalia avicennoidesCombret-Burkina Faso3130·939<0·001DT1
    Terminalia macropteraCombret-Burkina Faso4680·9090·001DT1
    Trichilia emeticaMeli-Kenya6980·1390·824DS1
    Vitellaria paradoxaSapot-Burkina Faso47000·2350·915DS1
    Widdringtonia whyteiCupress-Malawi120·2600·030DT1
    Ximenia americanaOlac-Tanzania6210·3580·321DT1
    Zanha africanaSapind-Malawi9100·0360·944DS1
    Ziziphus mauritaniaRhamn-Burkina Faso2980·8440·002DT1
Species
Family
Country
Seed mass (mg)
SCR
P(D – S)
DS/DT?
Europe
    Acer platanoidesAcer-UK1250·5090·023DT1
    Acer pseudoplatanusAcer-Italy1330·3710·089DT2, DS2,3,4,5
    Aesculus hippocastanumHippocastan-UK64370·1900·958DS1
    Carpinus betulifoliaBetul-UK44·30·7990·001DT1
    Castanea sativaFag-France30260·2000·910DS1
    Corylus avellanaBetul-UK12620·5370·134DT1
    Fagus sylvaticaFag-UK2060·3210·196DT1
    Juglans regiaJugland-UK111000·6560·265DT1
    Pinus sylvestrisPin-UK9·50·2340·031DT1
    Quercus roburFag-UK22850·1900·895DS1
Africa
    Anogeissus leiocarpusCombret-Burkina Faso7·30·630<0·001DT1
    Azadiracta indicaMeli-Burkina Faso4900·8000·005DT6, DS7,8
    Azanza garckeanaMalv-Kenya2450·6200·014DT1
    Carapa proceraMeli-Mali10230·3320·894DS1
    Cola cordifoliaMalv-Burkina Faso16870·1170·930DS1
    Cola nitidaMalv-Côte d'Ivoire64720·0750·986DS1
    Dovyalis caffraFlacourti-Kenya170·3250·022DT1
    Erythroxylum emarginayumErythroxyl-Malawi56·60·2600·118DT1
    Garcinia huillensisClusi-Malawi16300·3590·536DS1
    Khaya senegalensisMeli-Burkina Faso1780·3190·178DT1
    Kigelia africanaBignoni-Burkina Faso710·7100·002DT1
    Lannea microcarpaAnacardi-Burkina Faso1350·3690·092DT1
    Memecylon flavovirensMelastomat-Malawi2890·4950·056DT1
    Prunus africanaRos-Kenya1130·2200·276DT1
    Pterocarpus lucensFab-Burkina Faso1960·886<0·001DT1
    Sclerocarya birreaAnacardi-Kenya33800·8810·012DT1
    Sterculia quinquelobaMalv-Malawi8000·4300·226DT1
    Strychnos cocculoidesLogani-Tanzania1910·2720·270DT1
    Syzygium cuminiMyrt-Tanzania6810·0760·896DS1
    Syzygium guineensisMyrt-Malawi4150·0900·825DS1
    Terminalia avicennoidesCombret-Burkina Faso3130·939<0·001DT1
    Terminalia macropteraCombret-Burkina Faso4680·9090·001DT1
    Trichilia emeticaMeli-Kenya6980·1390·824DS1
    Vitellaria paradoxaSapot-Burkina Faso47000·2350·915DS1
    Widdringtonia whyteiCupress-Malawi120·2600·030DT1
    Ximenia americanaOlac-Tanzania6210·3580·321DT1
    Zanha africanaSapind-Malawi9100·0360·944DS1
    Ziziphus mauritaniaRhamn-Burkina Faso2980·8440·002DT1

Desiccation-sensitive (DS) species are shown in bold type font. DT, desiccation tolerant.

DISCUSSION

These results demonstrate that two seed traits, seed mass and SCR correlate with seed responses to desiccation. Furthermore, using these two traits to develop a predictive model, based on the responses of Panamanian tropical forest woody species, is sufficient to predict the response to drying for seeds of trees from a further two biomes and continents.

Whilst it is unsurprising that seed mass correlates with desiccation sensitivity since larger seeds will desiccate more slowly, the adaptive significance of a low SCR for desiccation-sensitive species is less clear. Desiccation-sensitive seeds are at high water contents at shedding, are metabolically active and in some instances are actively progressing towards germination (e.g. Avicennia marina; Berjak et al., 1984). Consequently, desiccation-sensitive species have the potential to germinate rapidly, which may further reduce the opportunity for seed drying by facilitating access to soil water (Pritchard et al., 2004b; Daws et al., 2005). Such responses could be delayed by a ‘thick’ seed coat. In addition, rapid germination may help minimize seed consumption by vertebrate seed predators; since seedlings are often less appealing than seeds (Curran and Webb, 2000), the need to ‘invest’ in thick covering structures for defensive purposes may be reduced. Consequently, for desiccation-sensitive species, there may be little benefit in having a thick covering structure that is both inefficient in terms of seed provisioning and delays germination (Pritchard et al., 2004b; Daws et al., 2005). However, a number of temperate desiccation-sensitive species, such as Aesculus hippocastanum (Pritchard et al., 1996) and Quercus robur (Pritchard and Manger, 1990), have delayed germination or dormancy to ensure germination occurs in spring rather than at the time of seed dispersal (autumn). Both these species also have a low SCR (Table 2), suggesting that their ‘attractiveness’ to seed predators may be advantageous; indeed, many seed predators, e.g. squirrels and jays, actively cache these seeds, which will both reduce the risk of desiccation (Garcia et al., 2002) and contribute to seed dispersal in space (den Ouden et al., 2005).

As a function of the logistic model, there is a tendency for larger seeded desiccation-sensitive species to have a higher SCR (see Fig. 1). Whilst, on average, SCR is lower in desiccation-sensitive than -tolerant species, this finding potentially adds an additional level of complexity to our understanding of the trade-offs between seed physical defence and seed mass as they interact with the response to desiccation.

Seed water content at dispersal was not a useful predictor of response to drying in our logistic model for the Panamanian species (Table 1) even though this feature was shown to correlate with the response to desiccation in the Meliaceae (Hong and Ellis, 1998). Nonetheless, in agreement with Hong and Ellis (1998), all the desiccation-sensitive species in this study were shed at comparatively high water contents (20·3–52·5 %). However, the desiccation-tolerant species had a similar range of water contents from 9·1 to 61·6 %. Desiccation-sensitive seeds must be shed at high water contents because drying below approx. 20 % water content results in desiccation-induced mortality. In contrast, desiccation-tolerant seeds can be shed wet or dry: desiccation-tolerant seeds in fleshy fruits are often shed at high water contents (e.g. papaya, 43·3 % water content, Wood et al., 2000), whilst wind-dispersed seeds in dry capsules are typically shed at lower water contents (e.g. Trichospermum galeottii, 14·7 % water content).

A further proposed correlate of desiccation sensitivity is habitat, in terms of both local habitat, either at the time of seed dispersal or following dispersal (Dussert et al., 2000; Pritchard et al., 2004), or gross habitat type such as wet vs. dry (Tweddle et al., 2003). Desiccation-sensitive species are more frequent in wet tropical forests and decrease in abundance with increasing aridity (Tweddle et al., 2003). In dry environments, the time of seed dispersal coincides with the wettest months of the year (Pritchard et al., 2004b). However, for our Panamanian data set, rainfall in the month of seed shed did not make a significant contribution to the logistic model. Pritchard et al. (2004b) reported that desiccation-sensitive seeds of African dryland trees were typically shed when rainfall exceeded approx. 60 mm. However, even in the 4 month dry season on BCI, rainfall only falls below 60 mm for 2 months and averages 35 mm even in the driest months. Thus, dry season rainfall may not be sufficiently low to result in high mortality for desiccation-sensitive seeds in the short dry season. Alternatively, total monthly rainfall may be an inappropriate scale for considering this effect, and micro-site characteristics may be more useful. For example, one of the species with desiccation-sensitive seeds dispersed in the dry season on BCI (Virola sebeifera) is confined to wet micro-sites (Daws et al., 2002, 2005). Although we have been able to predict the risk of desiccation sensitivity while ignoring this variable, a consideration of climate and in particular micro-climatic variables in future models may improve their predictive power.

Whilst the predictions of the response to desiccation were accurate for 38 African and European woody species, 14 of the Panamanian species appear to have been misclassified by the model. A practical implication of this is that detailed characterization of the response to desiccation should be conducted on these species. The model correctly predicted the response for all 38 species from Africa and Europe including two species for which there has been debate over their seed storage classification (A. pseudoplatanus and A. indica). Acer pseudoplatanus has been classified as recalcitrant by a number of authors (e.g. Hong and Ellis, 1990; Dickie et al., 1991; Greggains et al., 2000) but as desiccation tolerant when harvested within the species native range (Daws et al., 2006). Our model predicts that seeds of this species are desiccation tolerant [probability of desiccation tolerance = 1 – P(desiccation sensitivity) = 0·911]. Previous reports of desiccation sensitivity are likely to reflect the use of seeds that developed under sub-optimal conditions and hence failed to display their maximum potential level of desiccation tolerance (MPDT; Daws et al., 2004, 2006). Similarly, there have been conflicting reports of the level of desiccation tolerance for A. indica seeds (Berjak et al., 1995; Poulsen, 1996; Sacandé, 2000), probably associated with difficulties in identifying seed maturity and optimal seed handling methodologies (Sacandé, 2000). Nonetheless, our model correctly predicts the MPDT response for this species (probability of desiccation tolerance = 0·995). Consequently our model may be of use in reclassifying woody species for which their current seed storage behaviour is in dispute.

Here we have shown how a model based on just two readily obtainable seed traits can predict the probability of a woody species having desiccation-sensitive seeds. Although based on species from one vegetation type, this model also correctly predicts the response to drying of species from both drier tropical and temperate vegetation types and has been developed with species whose seed masses span six orders of magnitude. Consequently, for unknown species with a seed mass value in this range (0·01 mg to 24 g), this model may provide the first step in a decision-making framework for the application of ex situ seed conservation strategies to a diverse range of species from many habitats.

APPENDIX 1

Details of the 104 Panamanian species used in the study

Classification to family level (names lack the -aceae suffix), seed mass, seed coat ratio (SCR), rainfall in the month of seed dispersal and seed water content (WC) at shedding (species with desiccation-sensitive seeds are shown in bold type face). Seed dry mass and seed coat ratio data are taken fromDaws et al. (2005). Also shown is the predicted probability of seeds of each species exhibiting desiccation sensitivity P (D – S) based on entering species-specific values for SCR and dry mass intoEquation 1

Species
Family
Dry mass (mg)
SCR
Monthly rainfall at seed shed (mm)
WC at dispersal (% f. wt. basis)
P(D – S)
Adelia triloba (Müll.Arg.) HemsleEuphorbi-260·35434·210·50·025
Adenopodia polystachya (L.) J.R.Dixon ex CroatFab-2980·94232·929·60·001
Albizia guachapele (H.B. & K.) DugandFab-320·43328017·10·012
Alchornea costaricensis Pax & K.Hoffm.Euphorbi-340·79928020·5<0·001
Alibertia edulis (Rich.) A.Rich. ex DC.Rubi-150·11432·924·40·142
Anacardium excelsum (Bertero & Balb. Ex Kunth) SkeelsAnacardi-15070·43328043·80·339*
Andira inermis (Sw.) KunthFab-7920·29728041·70·522
Annona glabra L.Annon-2290·358271·821·70·157
Annona muricata L.Annon-3220·70627522·30·008
Anthodon panamense A.C.Sm.Celastr-810·438310·461·10·031
Apeiba membranacea Spruce ex Benth.Malv-690·77628052·70·001
Apeiba tibourbou Aubl.Malv-170·58428025·20·002
Astronium graveolens Jacq.Anacardi-300·36828030·20·024
Bactris gasipaes KunthArec-16800·30327542·50·675
Beilschmiedia pendula (Sw.) Hemsl.Laur-39870·10028033·20·973
Brosimum alicastrum Sw.Mor-7120·04528058·70·924#
Byrsonima spicata (Cav.) KunthMalphigi-1080·9539321·7<0·001
Callichlamys latifolia (Rich.) K.Schum.Bignoni-1340·3289329·60·132
Calophyllum longifolium Willd.Clusi-45320·2669340·70·884
Capparis frondosa Jacq.Brassic-970·26227519·80·178
Carica papaya L.Caric-120·459349·343·30·004
Cecropia obtusifolia Bertol.Mor-0·50·878310·436·2<0·001
Chamaedorea tepejilote Liebm.Arec-1500·05327520·30·724
Chrysophyllum cainito L.Sapot-2100·56268·139·40·022
Clidemia octona (Bonpl.) L.O.WilliamsMelastomat-0·010·250271·829·4<0·001
Cochlospermum vitifolium (willd.) Sprenq.Cochlosperm-260·7419325·50·001
Connarus turczaninowii Triana & Planch.Connar-4050·21428018·60·572#
Cordia panamensis L.RileyBoragin-590·7209320·70·001
Cupania cinerea Poepp.Sapind-5100·254275·641·00·526
Cydista aequinoctalis (L.) Miers.Bignoni-1120·54732·958·10·014
Dalbergia retusa Hamsl·Fab-1300·79228014·70·001
Davilla aspera (Aubl.) BenoistDilleni-240·33728010·20·027
Dendropanax arboreus (L.) Decne. & Planch.Arali-80·79027542·7<0·001
Desmoncus isthmius L.H.BaileyArec-3140·26128033·60·397*
Didymopanax morototoni (Aubl.)Arali-140·64268·116·50·001
Dioclea reflexa Hook. f.Fab-40130·6729311·80·106
Dipteryx panamensis (Pittier) Record & mellFab-61270·87068·129·70·024
Elaeis oleifera (Kunth) CortésArec-25070·69428019·40·058
Enterolobium cyclocarpum (Jacq.) Griseb.Fab-5450·47028010·60·121
Ficus obtusifolia KunthMor-10·635271·829·9<0·001
Garcinia mangostana L.Clusi-7480·2810·548
Guarea guidonia (L.) SleumerMeli-1530·267271·827·80·240*
Guazuma ulmifolia Lam.Malv-40·48834·252·50·001
Gustavia superba (Kunth.) O. Berq.Lecythid-28150·061271·842·60·974
Hampea appendiculata (Donn. Sm.) Standl.Malv-600·187310·410·30·226
Herrania purpurea (Pittier) R.E.SchultMalv-2170·2969342·70·247*
Hevea brasiliense Müll.ArgEuphorbi-36300·5252750·319*
Hura crepitans L.Euphorbi-8450·32728018·10·463
Hybanthus prunifolius (Humb. & Bonpl. Ex Roem. & Schult.) Schulze-MenzViol-120·26828016·60·028
Hyeronima laxiflora (Tul.) Müll. ArgEuphorbi-70·69934·216·4<0·001
Hylenaea praecelsa (Miers) A.C.Sm.Celastr-20270·670310·416·50·060
Inga minutula (Schery) T.S.Elias.Fab-3800·14132·941·30·722
Laetia procera (Poepp.) EichlerSalic-50·76232·942·5<0·001
Lafoensia punicifolia DC.Lythr-360·51634·219·80·007
Lonchocarpus pentaphyllus (Poir.) KunthFab-1610·156310·419·60·501#
Luehea seemannii Triana & Planch.Malv-30·78434·220·2<0·001
Macfadyena unguis-cati (L.) A.H.GentryBignon-290·63332·956·90·002
Mangifera indica L.Anacardi-45000·381271·838·30·706
Margaritaria nobilis L. f.Euphorbi-80·756310·432·2<0·001
Maripa panamensis Hemsl.Convolvul-3530·094275·622·10·795
Mesechites trifida (Jacq.) Müll. Arg.Apocyn-30·429271·832·40·002
Miconia argentea (Sw.) DC.Melastomat-0·080·2749340·2<0·001
Mouriri myrtilloides subsp. parvifolia (Benth.) MorleyMelastomat-680·116271·837·20·400
Ochroma pyramidale (Cav. Ex Lam.) Urb.Malv-100·9409322·0<0·001
Ocotea whitei WoodsonLaur-73000·013271·833·70·993
Odontadenia macrantha (Roem. & Schutt.) Markgr.Apocyn-1720·37932·929·20·103
Ormosia macrocalyx DuckeFab-4010·131271·846·80·751#
Ossaea quinquenervia (Mill.) Coqn.Melastomat-0·010·207271·836·6<0·001
Pachira sessilis (Bentham) Pittier.Malv-3490·206271·813·60·557#
Passiflora foetida L.Passiflor-80·65034·230·4<0·001
Persea americana Mill.Laur-20 6700·037271·852·50·997
Piper marginatum Jacq.Piper-0·10·20832·935·5<0·001
Piper peltatum L.Piper-0·040·14727531·2<0·001
Platymiscium pinnatum (Jacq.) DugandFab-3130·79134·224·50·003
Platypodium elegans VogelFab-12190·8929310·80·004
Pouteria sapota (Jacq.) H.E.Moore & StearnSapot-13 0400·47227541·50·724
Prionostemma aspera (Lam.) MiersCelastr-1820·431275·638·90·068
Prioria copaifera Griseb.Fab-23 8400·366271·842·10·930
Protium panamense (Rose) I.M.Johnst.Burser-48000·25628026·40·899
Pseudobombax septenatum (Jacq.) DugandMalv-600·24632·911·30·140
Psidium guajava L.Myrt-80·86128024·8<0·001
Psychotria micrantha Kunth.Rubi-100·575238·438·30·001
Quararibea pterocalyx Hemsl.Malv-40400·356349·361·60·736#
Randia formosa (Jacq.) Schum.Rubi-310·523271·843·40·005
Rheedia edulis (Seem.) Planch.Clusi-2890·25228045·70·400*
Serjania rhombea Radlk.Sapind-110·829349·337·7<0·001
Siparuna guianensis Aubl.Monimi-200·618275·616·00·001
Solanum hayesii FernaldSolan-20·8079318·0<0·001
Spondias mombin L.Anacardi-11600·9572854·10·002
Stizolobium pruriens (L. in Stickm.) Medik.Fab-5290·1769310·00·715#
Stylogyne standleyi LundellMyrsin-660·2789338·20·114
Swartzia simplexochnacea’ (Sw.) Sprenq.Fab-10250·04828038·80·943
Swietenia macrophylla KingMeli-4700·29032·943·20·418
Synechanthus warscewiczianus H.Wendl.Arec-2720·105238·441·10·732
Syzygium jambos L.Myrt-23800·07632·90·965
Tabebuia guayacan (Seem.) Hemsl.Bignoni-260·20432·99·10·101
Tachigali versicolor Standl. & L.O.WilliamsFab-9100·275271·818·70·608#
Theobroma cacao L.Malv-17710·275280·743
Trema micrantha (L.) BlumeUlm-20·68227531·7<0·001
Trichilia tuberculata C. DC.Meli-1510·038310·440·20·754
Trichospermum galeottii (Turcz.) Kosterm.Malv-30·57134·214·7<0·001
Virola sebeifera Aubl.Myristic-4720·22368·122·10·585
Virola surinamensis (Rol.) Warb.Myristic-19520·10328025·90·946
Zanthoxylum panamense P.WilsonRut-290·791349·314·6<0·001
Species
Family
Dry mass (mg)
SCR
Monthly rainfall at seed shed (mm)
WC at dispersal (% f. wt. basis)
P(D – S)
Adelia triloba (Müll.Arg.) HemsleEuphorbi-260·35434·210·50·025
Adenopodia polystachya (L.) J.R.Dixon ex CroatFab-2980·94232·929·60·001
Albizia guachapele (H.B. & K.) DugandFab-320·43328017·10·012
Alchornea costaricensis Pax & K.Hoffm.Euphorbi-340·79928020·5<0·001
Alibertia edulis (Rich.) A.Rich. ex DC.Rubi-150·11432·924·40·142
Anacardium excelsum (Bertero & Balb. Ex Kunth) SkeelsAnacardi-15070·43328043·80·339*
Andira inermis (Sw.) KunthFab-7920·29728041·70·522
Annona glabra L.Annon-2290·358271·821·70·157
Annona muricata L.Annon-3220·70627522·30·008
Anthodon panamense A.C.Sm.Celastr-810·438310·461·10·031
Apeiba membranacea Spruce ex Benth.Malv-690·77628052·70·001
Apeiba tibourbou Aubl.Malv-170·58428025·20·002
Astronium graveolens Jacq.Anacardi-300·36828030·20·024
Bactris gasipaes KunthArec-16800·30327542·50·675
Beilschmiedia pendula (Sw.) Hemsl.Laur-39870·10028033·20·973
Brosimum alicastrum Sw.Mor-7120·04528058·70·924#
Byrsonima spicata (Cav.) KunthMalphigi-1080·9539321·7<0·001
Callichlamys latifolia (Rich.) K.Schum.Bignoni-1340·3289329·60·132
Calophyllum longifolium Willd.Clusi-45320·2669340·70·884
Capparis frondosa Jacq.Brassic-970·26227519·80·178
Carica papaya L.Caric-120·459349·343·30·004
Cecropia obtusifolia Bertol.Mor-0·50·878310·436·2<0·001
Chamaedorea tepejilote Liebm.Arec-1500·05327520·30·724
Chrysophyllum cainito L.Sapot-2100·56268·139·40·022
Clidemia octona (Bonpl.) L.O.WilliamsMelastomat-0·010·250271·829·4<0·001
Cochlospermum vitifolium (willd.) Sprenq.Cochlosperm-260·7419325·50·001
Connarus turczaninowii Triana & Planch.Connar-4050·21428018·60·572#
Cordia panamensis L.RileyBoragin-590·7209320·70·001
Cupania cinerea Poepp.Sapind-5100·254275·641·00·526
Cydista aequinoctalis (L.) Miers.Bignoni-1120·54732·958·10·014
Dalbergia retusa Hamsl·Fab-1300·79228014·70·001
Davilla aspera (Aubl.) BenoistDilleni-240·33728010·20·027
Dendropanax arboreus (L.) Decne. & Planch.Arali-80·79027542·7<0·001
Desmoncus isthmius L.H.BaileyArec-3140·26128033·60·397*
Didymopanax morototoni (Aubl.)Arali-140·64268·116·50·001
Dioclea reflexa Hook. f.Fab-40130·6729311·80·106
Dipteryx panamensis (Pittier) Record & mellFab-61270·87068·129·70·024
Elaeis oleifera (Kunth) CortésArec-25070·69428019·40·058
Enterolobium cyclocarpum (Jacq.) Griseb.Fab-5450·47028010·60·121
Ficus obtusifolia KunthMor-10·635271·829·9<0·001
Garcinia mangostana L.Clusi-7480·2810·548
Guarea guidonia (L.) SleumerMeli-1530·267271·827·80·240*
Guazuma ulmifolia Lam.Malv-40·48834·252·50·001
Gustavia superba (Kunth.) O. Berq.Lecythid-28150·061271·842·60·974
Hampea appendiculata (Donn. Sm.) Standl.Malv-600·187310·410·30·226
Herrania purpurea (Pittier) R.E.SchultMalv-2170·2969342·70·247*
Hevea brasiliense Müll.ArgEuphorbi-36300·5252750·319*
Hura crepitans L.Euphorbi-8450·32728018·10·463
Hybanthus prunifolius (Humb. & Bonpl. Ex Roem. & Schult.) Schulze-MenzViol-120·26828016·60·028
Hyeronima laxiflora (Tul.) Müll. ArgEuphorbi-70·69934·216·4<0·001
Hylenaea praecelsa (Miers) A.C.Sm.Celastr-20270·670310·416·50·060
Inga minutula (Schery) T.S.Elias.Fab-3800·14132·941·30·722
Laetia procera (Poepp.) EichlerSalic-50·76232·942·5<0·001
Lafoensia punicifolia DC.Lythr-360·51634·219·80·007
Lonchocarpus pentaphyllus (Poir.) KunthFab-1610·156310·419·60·501#
Luehea seemannii Triana & Planch.Malv-30·78434·220·2<0·001
Macfadyena unguis-cati (L.) A.H.GentryBignon-290·63332·956·90·002
Mangifera indica L.Anacardi-45000·381271·838·30·706
Margaritaria nobilis L. f.Euphorbi-80·756310·432·2<0·001
Maripa panamensis Hemsl.Convolvul-3530·094275·622·10·795
Mesechites trifida (Jacq.) Müll. Arg.Apocyn-30·429271·832·40·002
Miconia argentea (Sw.) DC.Melastomat-0·080·2749340·2<0·001
Mouriri myrtilloides subsp. parvifolia (Benth.) MorleyMelastomat-680·116271·837·20·400
Ochroma pyramidale (Cav. Ex Lam.) Urb.Malv-100·9409322·0<0·001
Ocotea whitei WoodsonLaur-73000·013271·833·70·993
Odontadenia macrantha (Roem. & Schutt.) Markgr.Apocyn-1720·37932·929·20·103
Ormosia macrocalyx DuckeFab-4010·131271·846·80·751#
Ossaea quinquenervia (Mill.) Coqn.Melastomat-0·010·207271·836·6<0·001
Pachira sessilis (Bentham) Pittier.Malv-3490·206271·813·60·557#
Passiflora foetida L.Passiflor-80·65034·230·4<0·001
Persea americana Mill.Laur-20 6700·037271·852·50·997
Piper marginatum Jacq.Piper-0·10·20832·935·5<0·001
Piper peltatum L.Piper-0·040·14727531·2<0·001
Platymiscium pinnatum (Jacq.) DugandFab-3130·79134·224·50·003
Platypodium elegans VogelFab-12190·8929310·80·004
Pouteria sapota (Jacq.) H.E.Moore & StearnSapot-13 0400·47227541·50·724
Prionostemma aspera (Lam.) MiersCelastr-1820·431275·638·90·068
Prioria copaifera Griseb.Fab-23 8400·366271·842·10·930
Protium panamense (Rose) I.M.Johnst.Burser-48000·25628026·40·899
Pseudobombax septenatum (Jacq.) DugandMalv-600·24632·911·30·140
Psidium guajava L.Myrt-80·86128024·8<0·001
Psychotria micrantha Kunth.Rubi-100·575238·438·30·001
Quararibea pterocalyx Hemsl.Malv-40400·356349·361·60·736#
Randia formosa (Jacq.) Schum.Rubi-310·523271·843·40·005
Rheedia edulis (Seem.) Planch.Clusi-2890·25228045·70·400*
Serjania rhombea Radlk.Sapind-110·829349·337·7<0·001
Siparuna guianensis Aubl.Monimi-200·618275·616·00·001
Solanum hayesii FernaldSolan-20·8079318·0<0·001
Spondias mombin L.Anacardi-11600·9572854·10·002
Stizolobium pruriens (L. in Stickm.) Medik.Fab-5290·1769310·00·715#
Stylogyne standleyi LundellMyrsin-660·2789338·20·114
Swartzia simplexochnacea’ (Sw.) Sprenq.Fab-10250·04828038·80·943
Swietenia macrophylla KingMeli-4700·29032·943·20·418
Synechanthus warscewiczianus H.Wendl.Arec-2720·105238·441·10·732
Syzygium jambos L.Myrt-23800·07632·90·965
Tabebuia guayacan (Seem.) Hemsl.Bignoni-260·20432·99·10·101
Tachigali versicolor Standl. & L.O.WilliamsFab-9100·275271·818·70·608#
Theobroma cacao L.Malv-17710·275280·743
Trema micrantha (L.) BlumeUlm-20·68227531·7<0·001
Trichilia tuberculata C. DC.Meli-1510·038310·440·20·754
Trichospermum galeottii (Turcz.) Kosterm.Malv-30·57134·214·7<0·001
Virola sebeifera Aubl.Myristic-4720·22368·122·10·585
Virola surinamensis (Rol.) Warb.Myristic-19520·10328025·90·946
Zanthoxylum panamense P.WilsonRut-290·791349·314·6<0·001
#

Desiccation-tolerant species incorrectly assigned both by our model (Equation 1) and in the cross-validation as desiccation sensitive.

*

Desiccation-sensitive species incorrectly assigned both by our model (Equation 1) and in the cross-validation as desiccation tolerant.

Classification to family level (names lack the -aceae suffix), seed mass, seed coat ratio (SCR), rainfall in the month of seed dispersal and seed water content (WC) at shedding (species with desiccation-sensitive seeds are shown in bold type face). Seed dry mass and seed coat ratio data are taken fromDaws et al. (2005). Also shown is the predicted probability of seeds of each species exhibiting desiccation sensitivity P (D – S) based on entering species-specific values for SCR and dry mass intoEquation 1

Species
Family
Dry mass (mg)
SCR
Monthly rainfall at seed shed (mm)
WC at dispersal (% f. wt. basis)
P(D – S)
Adelia triloba (Müll.Arg.) HemsleEuphorbi-260·35434·210·50·025
Adenopodia polystachya (L.) J.R.Dixon ex CroatFab-2980·94232·929·60·001
Albizia guachapele (H.B. & K.) DugandFab-320·43328017·10·012
Alchornea costaricensis Pax & K.Hoffm.Euphorbi-340·79928020·5<0·001
Alibertia edulis (Rich.) A.Rich. ex DC.Rubi-150·11432·924·40·142
Anacardium excelsum (Bertero & Balb. Ex Kunth) SkeelsAnacardi-15070·43328043·80·339*
Andira inermis (Sw.) KunthFab-7920·29728041·70·522
Annona glabra L.Annon-2290·358271·821·70·157
Annona muricata L.Annon-3220·70627522·30·008
Anthodon panamense A.C.Sm.Celastr-810·438310·461·10·031
Apeiba membranacea Spruce ex Benth.Malv-690·77628052·70·001
Apeiba tibourbou Aubl.Malv-170·58428025·20·002
Astronium graveolens Jacq.Anacardi-300·36828030·20·024
Bactris gasipaes KunthArec-16800·30327542·50·675
Beilschmiedia pendula (Sw.) Hemsl.Laur-39870·10028033·20·973
Brosimum alicastrum Sw.Mor-7120·04528058·70·924#
Byrsonima spicata (Cav.) KunthMalphigi-1080·9539321·7<0·001
Callichlamys latifolia (Rich.) K.Schum.Bignoni-1340·3289329·60·132
Calophyllum longifolium Willd.Clusi-45320·2669340·70·884
Capparis frondosa Jacq.Brassic-970·26227519·80·178
Carica papaya L.Caric-120·459349·343·30·004
Cecropia obtusifolia Bertol.Mor-0·50·878310·436·2<0·001
Chamaedorea tepejilote Liebm.Arec-1500·05327520·30·724
Chrysophyllum cainito L.Sapot-2100·56268·139·40·022
Clidemia octona (Bonpl.) L.O.WilliamsMelastomat-0·010·250271·829·4<0·001
Cochlospermum vitifolium (willd.) Sprenq.Cochlosperm-260·7419325·50·001
Connarus turczaninowii Triana & Planch.Connar-4050·21428018·60·572#
Cordia panamensis L.RileyBoragin-590·7209320·70·001
Cupania cinerea Poepp.Sapind-5100·254275·641·00·526
Cydista aequinoctalis (L.) Miers.Bignoni-1120·54732·958·10·014
Dalbergia retusa Hamsl·Fab-1300·79228014·70·001
Davilla aspera (Aubl.) BenoistDilleni-240·33728010·20·027
Dendropanax arboreus (L.) Decne. & Planch.Arali-80·79027542·7<0·001
Desmoncus isthmius L.H.BaileyArec-3140·26128033·60·397*
Didymopanax morototoni (Aubl.)Arali-140·64268·116·50·001
Dioclea reflexa Hook. f.Fab-40130·6729311·80·106
Dipteryx panamensis (Pittier) Record & mellFab-61270·87068·129·70·024
Elaeis oleifera (Kunth) CortésArec-25070·69428019·40·058
Enterolobium cyclocarpum (Jacq.) Griseb.Fab-5450·47028010·60·121
Ficus obtusifolia KunthMor-10·635271·829·9<0·001
Garcinia mangostana L.Clusi-7480·2810·548
Guarea guidonia (L.) SleumerMeli-1530·267271·827·80·240*
Guazuma ulmifolia Lam.Malv-40·48834·252·50·001
Gustavia superba (Kunth.) O. Berq.Lecythid-28150·061271·842·60·974
Hampea appendiculata (Donn. Sm.) Standl.Malv-600·187310·410·30·226
Herrania purpurea (Pittier) R.E.SchultMalv-2170·2969342·70·247*
Hevea brasiliense Müll.ArgEuphorbi-36300·5252750·319*
Hura crepitans L.Euphorbi-8450·32728018·10·463
Hybanthus prunifolius (Humb. & Bonpl. Ex Roem. & Schult.) Schulze-MenzViol-120·26828016·60·028
Hyeronima laxiflora (Tul.) Müll. ArgEuphorbi-70·69934·216·4<0·001
Hylenaea praecelsa (Miers) A.C.Sm.Celastr-20270·670310·416·50·060
Inga minutula (Schery) T.S.Elias.Fab-3800·14132·941·30·722
Laetia procera (Poepp.) EichlerSalic-50·76232·942·5<0·001
Lafoensia punicifolia DC.Lythr-360·51634·219·80·007
Lonchocarpus pentaphyllus (Poir.) KunthFab-1610·156310·419·60·501#
Luehea seemannii Triana & Planch.Malv-30·78434·220·2<0·001
Macfadyena unguis-cati (L.) A.H.GentryBignon-290·63332·956·90·002
Mangifera indica L.Anacardi-45000·381271·838·30·706
Margaritaria nobilis L. f.Euphorbi-80·756310·432·2<0·001
Maripa panamensis Hemsl.Convolvul-3530·094275·622·10·795
Mesechites trifida (Jacq.) Müll. Arg.Apocyn-30·429271·832·40·002
Miconia argentea (Sw.) DC.Melastomat-0·080·2749340·2<0·001
Mouriri myrtilloides subsp. parvifolia (Benth.) MorleyMelastomat-680·116271·837·20·400
Ochroma pyramidale (Cav. Ex Lam.) Urb.Malv-100·9409322·0<0·001
Ocotea whitei WoodsonLaur-73000·013271·833·70·993
Odontadenia macrantha (Roem. & Schutt.) Markgr.Apocyn-1720·37932·929·20·103
Ormosia macrocalyx DuckeFab-4010·131271·846·80·751#
Ossaea quinquenervia (Mill.) Coqn.Melastomat-0·010·207271·836·6<0·001
Pachira sessilis (Bentham) Pittier.Malv-3490·206271·813·60·557#
Passiflora foetida L.Passiflor-80·65034·230·4<0·001
Persea americana Mill.Laur-20 6700·037271·852·50·997
Piper marginatum Jacq.Piper-0·10·20832·935·5<0·001
Piper peltatum L.Piper-0·040·14727531·2<0·001
Platymiscium pinnatum (Jacq.) DugandFab-3130·79134·224·50·003
Platypodium elegans VogelFab-12190·8929310·80·004
Pouteria sapota (Jacq.) H.E.Moore & StearnSapot-13 0400·47227541·50·724
Prionostemma aspera (Lam.) MiersCelastr-1820·431275·638·90·068
Prioria copaifera Griseb.Fab-23 8400·366271·842·10·930
Protium panamense (Rose) I.M.Johnst.Burser-48000·25628026·40·899
Pseudobombax septenatum (Jacq.) DugandMalv-600·24632·911·30·140
Psidium guajava L.Myrt-80·86128024·8<0·001
Psychotria micrantha Kunth.Rubi-100·575238·438·30·001
Quararibea pterocalyx Hemsl.Malv-40400·356349·361·60·736#
Randia formosa (Jacq.) Schum.Rubi-310·523271·843·40·005
Rheedia edulis (Seem.) Planch.Clusi-2890·25228045·70·400*
Serjania rhombea Radlk.Sapind-110·829349·337·7<0·001
Siparuna guianensis Aubl.Monimi-200·618275·616·00·001
Solanum hayesii FernaldSolan-20·8079318·0<0·001
Spondias mombin L.Anacardi-11600·9572854·10·002
Stizolobium pruriens (L. in Stickm.) Medik.Fab-5290·1769310·00·715#
Stylogyne standleyi LundellMyrsin-660·2789338·20·114
Swartzia simplexochnacea’ (Sw.) Sprenq.Fab-10250·04828038·80·943
Swietenia macrophylla KingMeli-4700·29032·943·20·418
Synechanthus warscewiczianus H.Wendl.Arec-2720·105238·441·10·732
Syzygium jambos L.Myrt-23800·07632·90·965
Tabebuia guayacan (Seem.) Hemsl.Bignoni-260·20432·99·10·101
Tachigali versicolor Standl. & L.O.WilliamsFab-9100·275271·818·70·608#
Theobroma cacao L.Malv-17710·275280·743
Trema micrantha (L.) BlumeUlm-20·68227531·7<0·001
Trichilia tuberculata C. DC.Meli-1510·038310·440·20·754
Trichospermum galeottii (Turcz.) Kosterm.Malv-30·57134·214·7<0·001
Virola sebeifera Aubl.Myristic-4720·22368·122·10·585
Virola surinamensis (Rol.) Warb.Myristic-19520·10328025·90·946
Zanthoxylum panamense P.WilsonRut-290·791349·314·6<0·001
Species
Family
Dry mass (mg)
SCR
Monthly rainfall at seed shed (mm)
WC at dispersal (% f. wt. basis)
P(D – S)
Adelia triloba (Müll.Arg.) HemsleEuphorbi-260·35434·210·50·025
Adenopodia polystachya (L.) J.R.Dixon ex CroatFab-2980·94232·929·60·001
Albizia guachapele (H.B. & K.) DugandFab-320·43328017·10·012
Alchornea costaricensis Pax & K.Hoffm.Euphorbi-340·79928020·5<0·001
Alibertia edulis (Rich.) A.Rich. ex DC.Rubi-150·11432·924·40·142
Anacardium excelsum (Bertero & Balb. Ex Kunth) SkeelsAnacardi-15070·43328043·80·339*
Andira inermis (Sw.) KunthFab-7920·29728041·70·522
Annona glabra L.Annon-2290·358271·821·70·157
Annona muricata L.Annon-3220·70627522·30·008
Anthodon panamense A.C.Sm.Celastr-810·438310·461·10·031
Apeiba membranacea Spruce ex Benth.Malv-690·77628052·70·001
Apeiba tibourbou Aubl.Malv-170·58428025·20·002
Astronium graveolens Jacq.Anacardi-300·36828030·20·024
Bactris gasipaes KunthArec-16800·30327542·50·675
Beilschmiedia pendula (Sw.) Hemsl.Laur-39870·10028033·20·973
Brosimum alicastrum Sw.Mor-7120·04528058·70·924#
Byrsonima spicata (Cav.) KunthMalphigi-1080·9539321·7<0·001
Callichlamys latifolia (Rich.) K.Schum.Bignoni-1340·3289329·60·132
Calophyllum longifolium Willd.Clusi-45320·2669340·70·884
Capparis frondosa Jacq.Brassic-970·26227519·80·178
Carica papaya L.Caric-120·459349·343·30·004
Cecropia obtusifolia Bertol.Mor-0·50·878310·436·2<0·001
Chamaedorea tepejilote Liebm.Arec-1500·05327520·30·724
Chrysophyllum cainito L.Sapot-2100·56268·139·40·022
Clidemia octona (Bonpl.) L.O.WilliamsMelastomat-0·010·250271·829·4<0·001
Cochlospermum vitifolium (willd.) Sprenq.Cochlosperm-260·7419325·50·001
Connarus turczaninowii Triana & Planch.Connar-4050·21428018·60·572#
Cordia panamensis L.RileyBoragin-590·7209320·70·001
Cupania cinerea Poepp.Sapind-5100·254275·641·00·526
Cydista aequinoctalis (L.) Miers.Bignoni-1120·54732·958·10·014
Dalbergia retusa Hamsl·Fab-1300·79228014·70·001
Davilla aspera (Aubl.) BenoistDilleni-240·33728010·20·027
Dendropanax arboreus (L.) Decne. & Planch.Arali-80·79027542·7<0·001
Desmoncus isthmius L.H.BaileyArec-3140·26128033·60·397*
Didymopanax morototoni (Aubl.)Arali-140·64268·116·50·001
Dioclea reflexa Hook. f.Fab-40130·6729311·80·106
Dipteryx panamensis (Pittier) Record & mellFab-61270·87068·129·70·024
Elaeis oleifera (Kunth) CortésArec-25070·69428019·40·058
Enterolobium cyclocarpum (Jacq.) Griseb.Fab-5450·47028010·60·121
Ficus obtusifolia KunthMor-10·635271·829·9<0·001
Garcinia mangostana L.Clusi-7480·2810·548
Guarea guidonia (L.) SleumerMeli-1530·267271·827·80·240*
Guazuma ulmifolia Lam.Malv-40·48834·252·50·001
Gustavia superba (Kunth.) O. Berq.Lecythid-28150·061271·842·60·974
Hampea appendiculata (Donn. Sm.) Standl.Malv-600·187310·410·30·226
Herrania purpurea (Pittier) R.E.SchultMalv-2170·2969342·70·247*
Hevea brasiliense Müll.ArgEuphorbi-36300·5252750·319*
Hura crepitans L.Euphorbi-8450·32728018·10·463
Hybanthus prunifolius (Humb. & Bonpl. Ex Roem. & Schult.) Schulze-MenzViol-120·26828016·60·028
Hyeronima laxiflora (Tul.) Müll. ArgEuphorbi-70·69934·216·4<0·001
Hylenaea praecelsa (Miers) A.C.Sm.Celastr-20270·670310·416·50·060
Inga minutula (Schery) T.S.Elias.Fab-3800·14132·941·30·722
Laetia procera (Poepp.) EichlerSalic-50·76232·942·5<0·001
Lafoensia punicifolia DC.Lythr-360·51634·219·80·007
Lonchocarpus pentaphyllus (Poir.) KunthFab-1610·156310·419·60·501#
Luehea seemannii Triana & Planch.Malv-30·78434·220·2<0·001
Macfadyena unguis-cati (L.) A.H.GentryBignon-290·63332·956·90·002
Mangifera indica L.Anacardi-45000·381271·838·30·706
Margaritaria nobilis L. f.Euphorbi-80·756310·432·2<0·001
Maripa panamensis Hemsl.Convolvul-3530·094275·622·10·795
Mesechites trifida (Jacq.) Müll. Arg.Apocyn-30·429271·832·40·002
Miconia argentea (Sw.) DC.Melastomat-0·080·2749340·2<0·001
Mouriri myrtilloides subsp. parvifolia (Benth.) MorleyMelastomat-680·116271·837·20·400
Ochroma pyramidale (Cav. Ex Lam.) Urb.Malv-100·9409322·0<0·001
Ocotea whitei WoodsonLaur-73000·013271·833·70·993
Odontadenia macrantha (Roem. & Schutt.) Markgr.Apocyn-1720·37932·929·20·103
Ormosia macrocalyx DuckeFab-4010·131271·846·80·751#
Ossaea quinquenervia (Mill.) Coqn.Melastomat-0·010·207271·836·6<0·001
Pachira sessilis (Bentham) Pittier.Malv-3490·206271·813·60·557#
Passiflora foetida L.Passiflor-80·65034·230·4<0·001
Persea americana Mill.Laur-20 6700·037271·852·50·997
Piper marginatum Jacq.Piper-0·10·20832·935·5<0·001
Piper peltatum L.Piper-0·040·14727531·2<0·001
Platymiscium pinnatum (Jacq.) DugandFab-3130·79134·224·50·003
Platypodium elegans VogelFab-12190·8929310·80·004
Pouteria sapota (Jacq.) H.E.Moore & StearnSapot-13 0400·47227541·50·724
Prionostemma aspera (Lam.) MiersCelastr-1820·431275·638·90·068
Prioria copaifera Griseb.Fab-23 8400·366271·842·10·930
Protium panamense (Rose) I.M.Johnst.Burser-48000·25628026·40·899
Pseudobombax septenatum (Jacq.) DugandMalv-600·24632·911·30·140
Psidium guajava L.Myrt-80·86128024·8<0·001
Psychotria micrantha Kunth.Rubi-100·575238·438·30·001
Quararibea pterocalyx Hemsl.Malv-40400·356349·361·60·736#
Randia formosa (Jacq.) Schum.Rubi-310·523271·843·40·005
Rheedia edulis (Seem.) Planch.Clusi-2890·25228045·70·400*
Serjania rhombea Radlk.Sapind-110·829349·337·7<0·001
Siparuna guianensis Aubl.Monimi-200·618275·616·00·001
Solanum hayesii FernaldSolan-20·8079318·0<0·001
Spondias mombin L.Anacardi-11600·9572854·10·002
Stizolobium pruriens (L. in Stickm.) Medik.Fab-5290·1769310·00·715#
Stylogyne standleyi LundellMyrsin-660·2789338·20·114
Swartzia simplexochnacea’ (Sw.) Sprenq.Fab-10250·04828038·80·943
Swietenia macrophylla KingMeli-4700·29032·943·20·418
Synechanthus warscewiczianus H.Wendl.Arec-2720·105238·441·10·732
Syzygium jambos L.Myrt-23800·07632·90·965
Tabebuia guayacan (Seem.) Hemsl.Bignoni-260·20432·99·10·101
Tachigali versicolor Standl. & L.O.WilliamsFab-9100·275271·818·70·608#
Theobroma cacao L.Malv-17710·275280·743
Trema micrantha (L.) BlumeUlm-20·68227531·7<0·001
Trichilia tuberculata C. DC.Meli-1510·038310·440·20·754
Trichospermum galeottii (Turcz.) Kosterm.Malv-30·57134·214·7<0·001
Virola sebeifera Aubl.Myristic-4720·22368·122·10·585
Virola surinamensis (Rol.) Warb.Myristic-19520·10328025·90·946
Zanthoxylum panamense P.WilsonRut-290·791349·314·6<0·001
#

Desiccation-tolerant species incorrectly assigned both by our model (Equation 1) and in the cross-validation as desiccation sensitive.

*

Desiccation-sensitive species incorrectly assigned both by our model (Equation 1) and in the cross-validation as desiccation tolerant.

We thank Professor Norman Pammenter for comments on the manuscript. Steven Paton of the Smithsonian Tropical Research Institute, Panamá kindly provided rainfall data. Financial support to N.C.G. was provided by the NSF (BSR-8517395), NERC (GR3-69511) and the Smithsonian Tropical Research Institute. Financial support to M.I.D. and H.W.P. was provided by the Millennium Commission, The Wellcome Trust and Orange plc. The Royal Botanic Gardens, Kew receives grant-aided support from Defra, UK. Funding to pay the Open Access publication charges for this article was provided by the Royal Botanic Gardens, Kew.

LITERATURE CITED

Berjak P, Dini M, Pammenter NW.

1984
. Possible mechanisms underlying the different dehydration responses in recalcitrant and orthodox seeds: desiccation-associated subcellular changes in propagules of Avicennia marina.
Seed Science and Technology
12
:
365
–384.

Berjak P, Campbell GK, Farrant JM, Omondi Oloo W, Pammenter NW.

1995
. Responses of seeds of Azadirachta indica (neem) to short-term storage under ambient or chilled conditions.
Seed Science and Technology
23
:
779
–792.

Black M, Pritchard HW. (eds).

2002
.Desiccation and survival in plants: drying without dying. Wallingford, UK: CAB International.

Curran LM, Webb CO.

2000
. Experimental tests of the spatio-temporal scale of seed predation in mast-fruiting Dipterocarpaceae.
Ecological Monographs
70
:
129
–148.

D'Arcy WG.

1987
.Flora of Panama: checklist and index. Part I: the introduction and checklist. Monographs in systematic botany, Vol. 17. Missouri, USA: Missouri Botanical Garden Press.

Daws MI, Mullins CE, Burslem DFRP, Paton SR, Dalling JW.

2002
. Topographic position affects the water regime in a semideciduous tropical forest in Panama.
Plant and Soil
238
:
79
–90.

Daws MI, Lydall E, Chmielarz P, Leprince O, Matthews S, Thanos CA, Pritchard HW.

2004
. Developmental heat sum influences recalcitrant seed traits in Aesculus hippocastanum across Europe.
New Phytologist
162
:
157
–166.

Daws MI, Garwood NC, Pritchard HW.

2005
. Traits of recalcitrant seeds in a semi-deciduous forest in Panamá: some ecological implications.
Functional Ecology
19
:
874
–885.

Daws MI, Cleland H, Chmielarz P, Gorian F, Leprince O, Mullins CE, Thanos CA, Vandvik V, Pritchard HW.

2006
. Variable desiccation tolerance in Acer pseudoplatanus seeds in relation to developmental conditions: a case of phenotypic recalcitrance?
Functional Plant Biology
33
:
59
–66.

Den Ouden J, Jansen PA, Smit R.

2005
. Jays, mice and oaks: predation and dispersal of Quercus robur and Q. petraea in North Western Europe. In: Forget P-M, Lambert JE, Hulme PE, Vander Wall SB, eds. Seed fate: predation, dispersal and seedling establishment. Wallingford, UK: CABI Publishing, 223–240.

Dickie JB, Bowyer JT.

1985
. Estimation of provisional seed viability constants for apple (Malus domestica Borkh cv Greensleeves).
Annals of Botany
56
:
271
–275.

Dickie JB, Pritchard HW.

2002
. Systematic and evolutionary aspects of desiccation tolerance in seeds. In: Black M, Pritchard HW, eds. Desiccation and survival in plants: drying without dying. Wallingford, UK: CAB International, 239–259.

Dickie JB, May K, Morris SVA, Titley SE.

1991
. The effects of desiccation on seed survival in Acer platanoides L. and Acer pseudoplatanus L.
Seed Science Research
1
:
149
–162.

Dietrich WE, Windsor DM, Dunne T.

1982
. Geology, climate and hydrology of Barro Colorado Island. In: Leigh EG Jr, Rand AS, Windsor DM, eds. The ecology of a tropical forest: seasonal rhythms and long-term changes. Washington, DC: Smithsonian Institution Press, 21–46.

Dussert S, Chabrillange N, Engelmann F, Anthony F, Louarn J, Hamon S.

2000
. Relationship between seed desiccation sensitivity, seed water content at maturity and climatic characteristics of native environments of nine Coffea L. species.
Seed Science Research
10
:
293
–300.

Ellis RH, Hong TD, Roberts EH.

1990
. An intermediate category of seed storage behaviour. 1. Coffee.
Journal of Experimental Botany
4
:
1167
–1174.

Flynn S, Turner RM, Dickie JB.

2004
. Seed Information Database (release 6.0, October 2004) http://www.rbgkew.org.uk/data/sid

Garcia D, Banuelos MJ, Houle G.

2002
. Differential effects of acorn burial and litter cover on Quercus rubra recruitment at the limit of its range in eastern North America.
Canadian Journal of Botany–Revue Canadienne de Botanique
80
:
1115
–1120.

Greggains V, Finch-Savage WE, Quick WP, Atherton NM.

2000
. Putative desiccation tolerance mechanisms in orthodox and recalcitrant seeds of the genus Acer.
Seed Science Research
10
:
317
–327.

Grubb PJ, Burslem DFRP.

1998
. Mineral nutrient concentrations as a function of seed size within seed crops: implications for competition among seedlings and defence against herbivory.
Journal of Tropical Ecology
14
:
177
–185.

Hong TD, Ellis RH.

1990
. A comparison of maturation drying, germination, and desiccation tolerance between developing seeds of Acer pseudoplatanus L. and Acer platanoides L.
New Phytologist
116
:
589
–596.

Hong TD, Ellis RH.

1996
.A protocol to determine seed storage behaviour. IPGRI, Technical Bulletin No. 1. Rome, Italy: International Plant Genetic Resources Institute.

Hong TD, Ellis RH.

1997
.Ex situ biodiversity conservation by seed storage: multiple-criteria keys to estimate seed storage behaviour.
Seed Science and Technology
25
:
157
–161.

Hong TD, Ellis RH.

1998
. Contrasting seed storage behaviour among different species of Meliaceae.
Seed Science and Technology
26
:
77
–95.

ISTA

1999
. International rules for seed testing.
Seed Science and Technology
27
(Supplement).

Leigh EG Jr, Rand AS, Windsor DM. (eds).

1982
.The ecology of a neotropical forest: seasonal rhythms and longer-term changes. Washington, DC: Smithsonian Institution Press.

Pammenter NW, Berjak P.

1999
. A review of recalcitrant seed physiology in relation to desiccation tolerance mechanisms.
Seed Science Research
9
:
13
–37.

Poulsen K.

1996
. Case study: neem (Azadiracta indica A. Juss.) seed research. In: Ouedraogo AS, Poulsen K, Stubsgaard F, eds. Intermediate/recalcitrant tropical forest tree seeds. Rome, Italy: International Plant Genetic Resources Institute, 14–26.

Pritchard HW.

2004
. Classification of seed storage ‘types’ for ex situ conservation in relation to temperature and moisture. In: Guerrant EO, Havens K, Maunder M, eds. Ex situ plant conservation: supporting species survival in the wild. Washington, DC: Island Press, 139–161.

Pritchard HW, Manger KR.

1998
. A calorimetric perspective on desiccation stress during preservation procedures with recalcitrant seeds of Quercus robur L.
Cryo-Letters
19
(Supplement 1),
23
–30.

Pritchard HW, Wood CB, Hodges S, Vautier HJ.

2004
. 100-seed test for desiccation tolerance and germination: a case study on 8 tropical palm species.
Seed Science and Technology
32
:
393
–403.

Pritchard HW, Daws MI, Fletcher BJ, Gaméné CS, Msanga HP, Omondi W.

2004
. Ecological correlates of seed desiccation tolerance in tropical African dryland trees.
American Journal of Botany
91
:
863
–870.

Sacandé M.

2000
.Stress, storage and survival of neem seed. PhD thesis. The Netherlands: Wageningen University.

Tabachnick BG, Fidell LS.

2001
.Using multivariate statistics, 4th edn. Boston, MD: Allyn and Bacon.

Tompsett PB.

1984
. Desiccation studies in relation to the storage of Araucaria seed.
Annals of Applied Biology
105
:
581
–586.

Tompsett PB.

1987
. Desiccation and storage studies on Dipterocarpus seeds.
Annals of Applied Biology
110
:
371
–379.

Tweddle JC, Dickie JB, Baskin CC, Baskin JM.

2003
. Ecological aspects of seed desiccation sensitivity.
Journal of Ecology
91
:
294
–304.

Wood CB, Pritchard HW, Amritphale D.

2000
. Desiccation induced dormancy in papaya (Carica papaya L.) seeds is alleviated by heat shock.
Seed Science Research
10
:
135
–145.

Author notes

1Seed Conservation Department, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK and 2Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901-6509, USA