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Interview with Endre Szemerédi 
Martin Raussen and Christian Skau

Raussen and Skau: Professor Szemerédi, first of all 
we would like to congratulate you as the tenth Abel 
Prize recipient! You will receive the prize tomorrow 
from His Majesty, the King of Norway.

You were born in Budapest, Hungary, in 1940 
during the Second World War. We have heard that 
you did not start out studying mathematics; in-
stead, you started in medical school and only later 
on shifted to mathematics. Were you nevertheless 
interested in mathematical problems as a child or 
teenager? Did you like to solve puzzles?

Szemerédi: I have always liked mathematics and 
it actually helped me to survive in a way: when I 
was in elementary school, I was very short and 
weak and the stronger guys would beat me up. 
So I had to find somebody to protect me. I was 
kind of lucky, since the strongest guy in the class 
did not understand anything about mathematics. 
He could never solve the homework exercises, let 
alone pass the exam. So I solved the homework 
exercises for him and I sat next to him at the exam. 
Of course, we cheated and he passed the exam. But 
he was an honest person and he always protected 
me afterwards from the other big guys so I was 
safe. Hence my early interest in mathematics was 
driven more by necessity and self-interest than by 
anything else. In elementary school I worked a lot 
with mathematics but only on that level, solving 
elementary school exercises. 

In high school I was good at mathematics. How-
ever, I did not really work on specific problems 
and, if I remember correctly, I never took part in 
any competitions. In Hungary there are different 
kinds of competitions. There is also a monthly 
journal KöMaL, where you may send in solutions 

to problems that are posed. At the 
end of the year the editors will add 
up points you get for good solutions. 

I never took part in this, the main 
reason being that my father wanted 
me to be a physician. At the time, this 
was the most recognized profession, 
prestigiously and also financially. So 
I studied mainly biology and some 
physics, but I always liked mathemat-
ics. It was not hard for me to solve 
high school exercises and to pass the 
exams. I even helped others, some-
times in an illegal way, but I did not 
do more mathematics than that. 

My education was not the usual 
education you get in Hungary if you 
want to be a mathematician. In Hungary we have 
two or three extremely good elite high schools. The 
best is Fazekas, in Budapest; they produce every 
year about five to ten mathematicians who, by the 
time they go to the university, know a lot. I was 
not among those. This is not a particular Hungar-
ian invention; also in the United States there are 
special schools concentrating on one subject. 

I can name a lot of mathematicians that are now 
considered to be the best ones in Hungary. Most  
of them (90 percent) finished the school at Faze-
kas. In Szeged, which is a town with about 200,000 
inhabitants, there are two specialist schools also 
producing some really good mathematicians. One 
of those mathematicians was a student of Bourgain 
at the Institute for Advanced Study in Princeton 
who just recently defended his thesis with a 
stunning result. But again, I was not among those 
highly educated high school students. 

R&S: Is it correct that you started to study math-
ematics at age 22?

Szemerédi: Well, it depends on how you define 
“started”. I dropped out of medical school after 
half a year. I realized that, for several reasons, 
it was not for me. Instead, I started to work at a 
machine-making factory, which actually was a very 
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good experience. I worked there slightly less than 
two years. 

In high school my good friend Gábor Ellmann 
was by far the best mathematician. Perhaps it is 
not proper to say this in this kind of interview 
but he was tall. I was very short in high school, at 
least until I was seventeen. I am not tall now, but 
at the time I was really short and that actually has 
its disadvantages. I do not want to elaborate. So I 
admired him very much because of his mathemati-
cal ability and also because he was tall. 

It was actually quite a coincidence that I met 
him in the center of the town. He was to date a 
girlfriend, but he was fifteen minutes late so she 
had left. He was standing there, and I ran into 
him and he asked me what I was doing. Gábor 
encouraged me to go to Eötvös University, and he 
also told me that our mathematics teacher at high 
school, Sándor Bende, agreed with his suggestion. 
As always, I took his advice; this was really the 
reason why I went to university. Looking back, I 
have tried to find some other reason but so far I 
have not been successful. 

At that time in Hungary you studied mathemat-
ics and physics for two years, and then one could 
continue to study physics, mathematics, and peda-
gogy for three years in order to become a math-
physics teacher. After the third year they would 
choose fifteen out of about two hundred students 
who would specialize in mathematics. 

Turán and Erdős 
R&S: We heard that Paul Turán was the first profes-
sor in mathematics that made a lasting impression 
on you. 

Szemerédi: That’s true. In my second year he 
gave a full-year lecture on number theory, which 
included elementary number theory, a little bit 
of analytic number theory, and algebraic number 
theory. His lectures were perfect. Somehow he 
could speak to all different kinds of students, 
from the less good ones to the good ones. I was 
so impressed with these lectures that I decided I 
would like to be a mathematician. Up to that point 
I was not sure that I would choose this profession, 
so I consider Paul Turán to be the one who actually 
helped me to decide to become a mathematician. 

He is still one of my icons. I have never worked 
with him; I have only listened to his lectures and 
sometimes I went to his seminars. I was not a 
number theorist, and he mainly worked in analytic 
number theory. 

 R&S: By the way, Turán visited the Institute 
for Advanced Study in Princeton in 1948, and he 
became a very good friend of the Norwegian math-
ematician Atle Selberg. 

Szemerédi: Yes, that is known in Hungary 
among the circle of mathematicians. 

R&S: May we ask what other professors at the 
university in Budapest were important for you. 
Which of them did you collaborate with later on? 

Szemerédi: Before the Second World War, Hun-
garian mathematics was very closely connected 
to German mathematics. The Riesz brothers, as 
well as Haar and von Neumann and many others, 
actually went to Germany after they graduated 
from very good high schools in Hungary. Actually, 
my wife Anna’s father studied there almost at the 
same time as von Neumann and, I guess, the physi-
cist Wigner. After having finished high school, he 
and also others, went to Germany. And after having 
finished university education in Germany, most of 
them went to the United States. I don’t know the 
exact story, but this is more or less the case. After 
the Second World War, we were somehow cut off 
from Germany. We then had more connections with 
Russian mathematics. 

In the late 1950s, Paul Erdős, the leading math-
ematician in discrete mathematics and combi-
natorics—actually, even in probability theory he 
did very good and famous work— started to visit 
Hungary, where his mother lived. We met quite 
often. He was a specialist in combinatorics. At the 
time, combinatorics had the reputation that you 
didn’t have to know too much. You just had to sit 
down and meditate on a problem. Erdős was out-
standing in posing good problems. Well, of course, 
as happens to most people, he sometimes posed 
questions which were not so interesting. But many 
of the problems he posed, after being solved, had 
repercussions in other parts of mathematics—also 
in continuous mathematics, in fact. In that sense 
Paul Erdős was the most influential mathematician 
for me, at least in my early mathematical career. 
We had quite a lot of joint papers. 

R&S: Twenty-nine joint papers, according to 
Wikipedia… 

Szemerédi: Maybe, I’m not sure. In the begin-
ning I almost exclusively worked with Paul Erdős. 
He definitely had a lasting influence on my math-
ematical thinking and mathematical work. 

R&S: Was it usually Erdős who posed the prob-
lems, or was there an interaction from the very 
start? 

Szemerédi: It was not only with me, it was with 
everybody. It was usually he who came up with the 
problems and others would work on them. Prob-
ably for many he is considered to be the greatest 
mathematician in that sense. He posed the most 
important problems in discrete mathematics which 
actually affected many other areas in mathematics. 
Even if he didn’t foresee that solving a particular 
problem would have some effect on something 
else, he had a very good taste for problems. Not 
only the solution but actually the methods used 
to obtain the solution often survived the problem 
itself and were applied in many other areas of 
mathematics. 
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R&S: Random methods, for instance? 
Szemerédi: Yes, he was instrumental in in-

troducing and popularizing random methods. 
Actually, it is debatable who invented random 
methods. The Hungarian mathematician Szele 
used the so-called random method—it was not 
a method yet—to solve a problem. It was not a 
deterministic solution. But then Paul Erdős had a 
great breakthrough result when he gave a bound 
on the Ramsey number, still the central problem 
in Ramsey theory. After that work there has been 
no real progress. A little bit, yes, but nothing re-
ally spectacular. Erdős solved the problem using 
random methods. Specifically, he proved that by 
two-coloring the edges of a complete graph with n 
vertices randomly, almost certainly there will not 
be more than 2 log n vertices so that all the con-
necting edges are of the same color. 

In the United States, where I usually teach un-
dergraduate courses, I present that solution. The 
audience is quite diverse; many of them do not 
understand the solution. But the solution is actu-
ally simple, and the good students do understand 
it. We all know it is extremely important—not only 
the solution but the method. Then Erdős systemati-
cally started to use random methods. To that point 
they just provided a solution for a famous problem 
but then he started to apply random methods to 
many problems, even deterministic ones. 

And, of course, his collaboration with Rényi on 
the random graph is a milestone in mathematics; it 
started almost everything in random graph theory. 

R&S: And that happened around 1960? 
Szemerédi: Yes. It was in the 1960s, and it is 

considered to be the most influential paper in 
random graph theory. Their way of thinking and 
their methods are presently of great help for many, 
many mathematicians who work on determining 
the properties of real-life, large-scale networks and 
to find random methods that yield a good model 
for real-life networks. 

Moscow: Gelfond and Gelfand
R&S: You did your graduate work in Moscow in the 
period 1967–1970 with the eminent mathemati-
cian Israel Gelfand as your supervisor. He was not 
a specialist in combinatorics. Rumors would have 
it that you, in fact, intended to study with another 
Russian mathematician, Alexander Gelfond, who 
was a famous number theorist. How did this hap-
pen, and whom did you actually end up working 
with in Moscow? 

Szemerédi: This can be taken, depending on 
how you look at it, as a joke or it can be taken seri-
ously. As I have already told you, I was influenced 
by Paul Turán, who worked in analytic number 
theory. He was an analyst; his mathematics was 
much more concrete than what Gelfand and the 
group around him studied. At the time, this group 
consisted of Kazhdan, Margulis, Manin, Arnold, 

and others, and he had his famous Gelfand semi-
nar every week which lasted for hours. It was very 
frightening sitting there and not understanding 
anything. My education was not within this area at 
all. I usually had worked with Erdős on elementary 
problems, mainly within graph theory and combi-
natorics; it was very hard for me! 

I wanted to study with Gelfond, but by some 
unfortunate misspelling of the name I ended up 
with Gelfand. That is the truth. 

R&S: But why couldn’t you swap when you real-
ized that you had got it wrong? 

Szemerédi: I will try to explain. I was a so-called 
candidate student. That meant that you were sent 
to Moscow—or to Warsaw, for that matter—for 
three years. It had already been decided who would 
be your supervisor, and the system was quite 
rigid, though not entirely. I’m pretty sure that if 
you put a lot of effort into it, you could change 
your supervisor, but it was not so easy. However, 
it was much worse if you decided after half a year 
that it was not the right option for you and to go 
home. It was quite a shameful thing to just give up. 
You had passed the exams in Hungary and kind 
of promised you were going to work hard for the 
next three years. I realized immediately that this 
was not for me, and Gelfand also realized it and 
advised me not to do mathematics anymore, telling 
me: “Just try to find another profession; there are 
plenty in the world where you may be successful.” I 
was twenty-seven years old at the time, and he had 
all these star students aged around twenty, and 
twenty-seven was considered old! But in a sense, 
I was lucky: I went to Moscow in the fall of 1967, 
and in the spring next year, there was a confer-
ence on number theory in Hungary—in Debrecen, 
not Budapest. I was assigned to Gelfond; it was 
customary that every guest had his own Hungarian 
guide. I had a special role too, because Gelfond was 
supposed to buy clothes and shoes, which were 
hard to get in Russia at the time, for his wife. So I 
was in the driver's seat because I knew the shops 
pretty well. 

R&S: You spoke Russian then? 
Szemerédi: Well, my Russian was not that good. 

I don’t know if I should tell this in this interview, 
but I failed the Russian exam twice. Somehow I 
managed to pass the final exam and I was sent to 
Russia. My Russian was good enough for shopping 
but not good enough for having more complex con-
versations. I only had to ask Gelfond for the size of 
the shoes he wanted for his wife and then I had a 
conversation in Hungarian with the shopkeepers. 
I usually don’t have good taste, but because I had 
to rise to the occasion, so to say, I was very care-
ful and thought about it a lot. Later Gelfond told 
me that his wife was very satisfied. He was very 
kind and said that he would arrange the switch of 
supervisors! 
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This happened in the spring of 1968, but un-
fortunately he died that summer of a heart attack, 
so I stayed with Gelfand for a little more than a 
year after that. I could have returned to Hungary, 
but I didn’t want that; when I first agreed to study 
there, I felt I had to stay. They (i.e., Gelfand and 
the people around him) were very understanding 
when they realized that I would never learn what 
I was supposed to. Actually, my exam consisted of 
two exercises about representation theory taken 
from Kirillov’s book, which they usually give to 
third-year students. I did it, but there was an error 
in my solution. My supervisor was Bernstein, as 
you know a great mathematician and a very nice 
guy, too. He found the error in the solution, but 
he said that it was the effort that I had put into it 
that was important rather than the result, and he 
let me pass the exam. 

To become a candidate you had to write a dis-
sertation, and Gelfand let me write one about 
combinatorics. This is what I did. So, in a way, I 
finished my study in Moscow rather successfully. I 
did not learn anything, but I got the paper showing 
that I had become a candidate. 

At this time there was a hierarchy in Hungary: 
doctorate of the university, then candidate, doctor-
ate of the academy, then corresponding member 
of the academy, and then member of the academy. 
I achieved becoming a candidate of mathematics. 

R&S: You had to work entirely on your own in 
Moscow? 

Szemerédi: Yes, since I worked in combinator-
ics. 

R&S: Gelfond must have realized that you were 
a good student. Did he communicate this to Gelfand 
in any way? 

Szemerédi: That I don’t know. I only know that 
Gelfand very soon realized my lack of mathemati-
cal education. But when Gelfond came to Hungary, 
he talked to Turán and Erdős and also to Hungarian 
number theorists attending that meeting, and they 
were telling him: “Here is this guy who has a very 
limited background in mathematics.” This may be 
the reason why Gelfond agreed to take me as his 
student. But unfortunately he died early. 

Hungarian Mathematics 
R&S: We would like to come back to Hungarian 
mathematics. Considering the Hungarian popu-
lation is only about ten million people, the list of 
famous Hungarian mathematicians is very impres-
sive. To mention just a few, there is János Bolyai 
in the nineteenth century, one of the fathers of 
non-Euclidean geometry. In the twentieth century 
there is a long list, starting with the Riesz brothers, 
Frigyes and Marcel; Lipót Fejér; Gábor Szegő , Al-
fréd Haar; Tibor Radó; John von Neumann, perhaps 
the most ingenious of them all; Paul Turán; Paul 
Erdős; Alfréd Rényi; Raoul Bott (who left the country 
early but then became famous in the United States). 

Among those still alive, you have Peter Lax, who 
won the Abel Prize in 2005; Béla Bollobás, who is in 
Great Britain; László Lovász; and now you. It’s all 
very impressive. You have already mentioned some 
facts that may explain the success of Hungarian 
mathematics. Could you elaborate, please? 

Szemerédi: We definitely have a good system 
to produce elite mathematicians, and we have 
always had that. At the turn of the century—we 
are talking about the nineteenth century and the 
beginning of the twentieth century—we had two or 
three absolutely outstanding schools, not only the 
so-called Fasori, where von Neumann and Wigner 
studied, but also others. We were able to produce 
a string of young mathematicians, some of whom 
later went abroad and became great mathemati-
cians—or great physicists, for that matter. In that 
sense I think the educational system was extremely 
good. I don’t know whether the general education 
was that good, but definitely for mathematics 
and theoretical physics it was extremely good. We 
had at least five top schools that concentrated 
on these two subjects, and that is already good 
enough to produce some great mathematicians 
and physicists. 

Back to the question of whether the Hungarians 
are really so good or not. Definitely in discrete 
mathematics there was a golden period. This was 
mainly because of the influence of Erdős. He al-
ways travelled around the world, but he also spent 
a lot of time in Hungary. Discrete mathematics was 
certainly the strongest group. 

The situation has changed now. Many Hungarian 
students go abroad to study at Princeton, Harvard, 
Oxford, Cambridge, or Paris. Many of them stay 
abroad, but many of them come home and start 
to build schools. Now we cover a much broader 
spectrum of mathematics, such as algebraic ge-
ometry, differential geometry, low-dimensional 
topology, and other subjects. In spite of my being  
a mathematician working in discrete mathematics 
who doesn’t know practically anything about these 
subjects, I am very happy to see this development. 

R&S: You mentioned the journal KöMaL, which  
has been influential in promoting mathematics in 
Hungary. You told us that you were not personally 
engaged, but this journal was very important for 
the development of Hungarian mathematics. Isn’t 
that true? 

Szemerédi: You are absolutely right. This jour-
nal is meant for a wide audience. Every month the 
editors present problems, mainly from mathemat-
ics but also from physics. At least in my time, in 
the late 1950s, it was distributed to every high 
school, and a lot of the students worked on these 
problems. If you solved the problems regularly, 
then by the time you finished high school you 
would know almost as much as the students in the 
elite high schools. The editors added the points 
you got from each correct solution at the end of 
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the numbers. They made the conjecture that what 
really counts is that you have dense enough sets. 

That was the Erdős-Turán conjecture: if your set 
is dense enough in the interval 1 to n—we are of 
course talking about integers—then it will contain 
a long arithmetic progression. Later Erdős formu-
lated a very brave and much stronger conjecture: 
let’s consider an infinite sequence of positive inte-
gers, a1 < a2 < …, such that the sum of the inverses 
{1/ai} is divergent. Then the infinite sequence 
contains arbitrarily long arithmetic progressions. 
Of course, this would imply the absolutely funda-
mental result of Green and Tao about arbitrarily 
long arithmetic progressions within the primes 
because for the primes, we know that the sum of 
the inverses is divergent. 

That was a very brave conjecture; it isn’t even 
solved for arithmetic progressions of length k = 3. 
But now people have come very close to proving 
it: Tom Sanders proved that if we have a sub-
set between 1 and n containing at least n over  
log n(log log n)5 elements, then the subset contains 
a three-term arithmetic progression. Unfortu-
nately, we need a little bit more, but we are getting 
close to solving Erdős’s problem for k = 3 in the 
near future, which will be a great achievement. If 
I’m not mistaken, Erdős offered US $3,000 for the 
solution of the general case a long time ago. If you 
consider inflation, that means quite a lot of money. 

R&S: Erdős offered 1,000 USD for the problem 
you solved, and that’s the highest sum he ever 
paid, right? 

Szemerédi: Erdős offered US$1,000 as well for 
a problem in graph theory which was solved by  
V. Rödl and P. Frankl. These are the two problems 
I know about. 

R&S: Let's get back to how you got interested in 
the problem. 

Szemerédi: That was very close to the Gelfand/
Gelfond story, at least in a sense. At least the mes-
sage is the same: I overlooked facts. I tried to prove 
that if you have an arithmetic progression, then it 
cannot happen that the squares are dense inside 
of it; specifically, it cannot be that a positive frac-
tion of the elements of this arithmetic progression 
are squares. I was about twenty-five years old at 
the time and at the end of my university studies. 
At that time I already worked with Erdős. I very 
proudly showed him my proof, because I thought 
it was my first real result. Then he pointed out 
two, well, not errors, but deficiencies in my proof. 
Firstly, I had assumed that it was known that 
r4(n) = o (n),1 i.e., that if you have a set of positive 
upper density, then it has to contain an arithmetic 
progression of length four or, for that matter, of 
any length. I assumed that this was a true state-
ment. Then I used [the fact] that there are no four 

the year, giving a bonus for elegant solutions. Of 
course, the winners were virtually always from one 
of these elite high schools. 

But it was intended for a much wider audience 
and it helped a lot of students, not only mathemati-
cians. In particular, it also helped engineers. People 
may not know this, but we have very good schools 
for different kinds of engineering, and a lot of 
engineering students-to-be actually solved these 
problems. They may not have been among the 
best, but it helped them to develop a kind of criti-
cal thinking. You don’t just make a statement, but 
you try to see connections and put them together 
to solve the problems. So by the time they went to 
engineering schools, which by itself required some 
knowledge of mathematics, they were already quite 
well educated in mathematics because of KöMaL. 

KöMaL plays an absolutely important role and, I 
would like to emphasize, not only in mathematics 
but more generally in natural sciences. Perhaps 
even students in the humanities are now working 
on these problems. I am happy for that and I would 
advise them to continue to do so (of course, not 
to the full extent, because they have many other 
things to study). 

Important Methods and Results 
R&S: We would now like to ask you some questions 
about your main contributions to mathematics. 

You have made some groundbreaking (we 
don’t think that this adjective is an exaggeration) 
discoveries in combinatorics, graph theory, and 
combinatorial number theory. But arguably you are 
most famous for what is now called the Szemerédi 
theorem, the proof of the Erdős-Turán conjecture 
from 1936. 

Your proof is extremely complicated. The pub-
lished proof is forty-seven pages long and has been 
called a masterpiece of combinatorial reasoning. 
Could you explain first of all what the theorem 
says, the history behind it, and why and when you 
got interested in it? 

Szemerédi: Yes, I will start in a minute to ex-
plain what it is, but I suspect that not too many 
people have read it. I will explain how I got to the 
problem, but first I want to tell how the whole 
story started. It started with the theorem of van 
der Waerden: you fix two numbers, say five and 
three. Then you consider the integers up to a very 
large number, from 1 to n, say. Then you partition 
this set into five classes, and there will always be a 
class containing a three-term arithmetic progres-
sion. That was a fundamental result of van der 
Waerden—of course, not only with three and five 
but with general parameters. 

Later, Erdős and Turán meditated over this 
result. They thought that maybe the reason why 
there is an arithmetic progression is not the  
partition itself; if you partition into five classes, 
then one class contains at least one fifth of all 

1r4(n) denotes the proportion of elements between 1 and 
n that a subset must contain  in order for it to contain an 
arithmetic progression of length k. 
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Well, everybody forgets about the proofs they 
produced thirty years ago. But I reread my paper 
and I couldn’t find the regularity lemma. There oc-
curs a lemma in the proof which is similar to the 
regularity lemma, so maybe that lemma, which is 
definitely not the regularity lemma, inspired me 
later to prove the regularity lemma. 

The real story is that I heard Bollobás’s lectures 
from 1974 about strengthening the Erdős–Stone 
theorem. The Erdős–Stone theorem from the 1940s 
was also a breakthrough result, but I don’t want to 
explain it here. Then Bollobás and Erdős strength-
ened it. I listened to Bollobás’s lectures and tried 
to improve their result. Then it struck me that a 
kind of regularity lemma would come in handy, 
and this led me to prove the regularity lemma. I am 
very grateful to Vasek Chvatal, who helped me to 
write the regularity paper. Slightly later the two of 
us gave a tight bound for the Erdős-Stone theorem. 

R&S: I’ve seen that people refer to it in your proof 
of the Erdős-Turán conjecture as a weakened form 
of the regularity lemma. 

Szemerédi: Yes, weaker, but similar in ideology, 
so to speak. 

Connections to Ergodic Theory
R&S: Your proof of the Szemerédi theorem is the 
beginning of a very exciting story. We have heard 
from a reliable source that Hillel Furstenberg at the 
Hebrew University in Jerusalem first learned about 
your result when somebody gave a colloquium 
talk there in December 1975 and mentioned your 
theorem. Following the talk, there was a discussion 
in which Furstenberg said that his weak mixing of 
all orders theorem, which he already knew, would 
prove the ergodic version of the Szemerédi theorem 
in the weak mixing case. Since the Kronecker (or 
compact) case is trivial, one should be able to in-
terpolate between them so as to get the full ergodic 
version. It took a couple of months for him to work 
out the details, which became his famous multiple 
recurrence theorem in ergodic theory. 

We find it amazing that the Szemerédi theorem 
and Furstenberg’s multiple recurrence theorem 
are equivalent, in the sense that one can deduce 
one theorem from the other. We guess it is not off 
the mark to say that Furstenberg’s proof gave a 
conceptual framework for your theorem. What are 
your comments? 

Szemerédi: As opposed to me, Furstenberg is 
an educated mathematician. He is a great math-
ematician and he already had great results in 
ergodic theory; he knew a lot. He proved that a 
measure-preserving system has a multiple recur-
rence property; this is a far-reaching generaliza-
tion of a classical result by Poincaré. Using his 
result, Furstenberg proved my result on the k-term 
arithmetic progressions. So that is the short story 
about it. But I have to admit that his method is 
much stronger because it could be generalized to 

squares that form an arithmetic progression. 
However, Erdős told me that the first statement 
was not known; it was an open problem. The other 
one was already known to Euler, which was two 
hundred fifty years before my time. So I had as-
sumed something that is not known and, on the 
other hand, I had proved something that had been 
proven two hundred fifty years ago! 

The only way to try to correct something so em-
barrassing was to start working on the arithmetic 
progression problem. That was the time I started 
to work on r4(n) and, more generally, on rk(n). First 
I took a look at Klaus Roth’s proof from 1953 of 
r3(n) being less than n divided by log log n . I came 
up with a very elementary proof for r3(n) = o(n) so 
that even high school students could understand 
it easily. That was the starting point. Later I proved 
also that r4(n) = o(n). 

Erdős arranged for me to be invited to Notting-
ham to give a talk on that result. But my English 
was virtually nonexistent. Right now you can still 
judge that there is room for improvement in my 
English, but at the time it was almost nonexistent. 
I gave a series of lectures; Peter Elliot and Edward 
Wirsing, both extremely strong mathematicians, 
wrote a paper based almost entirely on my pictures 
on the blackboard. Perhaps they understood some 
easy words in English that I used. Anyway, they 
helped to write the paper for me. A similar thing 
happened when I solved rk(n) = o(n) for general k. 
Then my good friend András Hajnal helped me 
to write the paper. That is actually an understate-
ment. The truth is that he listened to my explana-
tions and he then wrote the paper. I am very grate-
ful to Peter Elliot, Edward Wirsing, and to my good 
friend András for their invaluable help. 

R&S: When did all this happen? 
Szemerédi: It was in 1973. The paper appeared 

in Acta Arithmetica in 1975. There is a controver-
sial issue—well, maybe controversial is too strong 
a word—about the proof. It is widely said that 
one of the main tools in the proof is the so-called 
regularity lemma, which is not true in my opinion. 

Martin Raussen (left) and Christian Skau (center) 
interviewing Abel Laureate Endre Szemerédi.
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Green meditated on it. They were probably more 
inspired by Furstenberg’s method, the ergodic 
method. That is at least my take on this thing, but 
I am not an expert on ergodic theory. 

R&S: But Furstenberg’s theorem came after and 
was inspired by yours. So however you put it, it goes 
back to you. 

Szemerédi: Yes, that is what they say. 
R&S: We should mention that Tim Gowers also 

gave a proof of the Szemerédi theorem. 
Szemerédi: He started with Roth’s method, 

which is an estimation of exponential sums. Roth 
proved in his paper that r3(n) is less than n divided 
by log log n. Tim Gowers’s fundamental work not 
only gave an absolutely strong bound for the size 
of a set A in the interval [1,n] not containing a 
k-term arithmetic progression, he also invented 
methods and concepts that later became extremely 
influential. He introduced a norm (actually, several 
norms) that is now called the Gowers norm. This 
norm controls the randomness of a set. If the Gow-
ers norm is big, he proved that it is correlated with 
a higher-order phase function, which is a higher-
order polynomial. Gowers, and independently 
Rödl, Naegle, Schacht, and Skokan, proved the 
hypergraph regularity lemma and the hypergraph 
counting lemma, which are main tools in additive 
combinatorics and in theoretical computer science. 

R&S: We should mention that Gowers received 
the Fields Medal in 1998 and that Terence Tao got 
it in 2006. Also, Roth was a Fields Medal recipient 
back in 1958. 

Random Graphs and the Regularity Lemma
R&S: Let’s get back to the so-called Szemerédi regu-
larity theorem. You have to explain the notions of 
random graphs and extremal graphs, because they 
are involved in this result. 

Szemerédi: How can we imagine a random 
graph? I will talk only about the simplest example. 
You have n points and the edges are just the pairs, 
so each edge connects two points. We say that the 
graph is complete if you include all the edges, but 
that is, of course, not an interesting object. In one 
model of the random graph, you just close your 
eyes and with probability ½ you choose an edge. 
Then you will eventually get a graph. That is what 
we call a random graph, and most of them have 
very nice properties. 

You just name any configuration, such as  four-
cycles C4, for instance, or the complete graph K4; 
then the number of such configurations is as you 
would expect. A random graph has many beautiful 
properties and it satisfies almost everything. Extre-
mal graph theory is about finding a configuration 
in a graph. If you know that your graph is a random 
graph, you can prove a lot of things. 

The regularity lemma is about the following. If 
you have any graph—unfortunately we have to as-
sume a dense graph, which means that you have a 

a multidimensional setting. Together with Katznel-
son he proved that in 1978. They could actually 
also prove the density Hales-Jewett theorem, 
but it took more than ten years. Then Bergelson 
and Leibman proved a polynomial version of the 
arithmetic progression result, much stronger than 
the original one. I doubt that you can get it by el-
ementary methods, but that is only my opinion. I 
will bet that they will not come up with a proof of 
the polynomial version within the next ten years 
by using elementary methods. 

But then very interesting things happened. Tim 
Gowers started the so-called Polymath Project: 
many people communicated with each other on the 
Internet and decided that they would try to give 
a combinatorial proof of the Hales-Jewett density 
theorem using only elementary methods. After two 
months they came up with an elementary proof. 
The density Hales-Jewett theorem was considered 
to be by far the hardest result proved by Fursten-
berg and Katznelson, and its proof is very long. 
The elementary proof of the density Hales–Jewett 
theorem is about twenty-five pages long. 

There is now a big discussion among mathema-
ticians whether one can use this method to solve 
other problems. Joint papers are very good when 
a small group of mathematicians cooperate. But 
the Polymath Project is different; hundreds of 
people communicate. You may work on something 
your whole life; then a hundred people appear, 
and many of them are ingenious. They solve your 
problem, and you are slightly disappointed. Is this 
a good thing? There is a big discussion among 
mathematicians about this method. I am for it. I 
will soon turn seventy-two years old, so I believe I 
can evaluate it without any self-interest. 

R&S: Still, all this started with your proof of the 
Erdős-Turán conjecture. You mentioned Green-
Tao. An important ingredient in their proof of the 
existence of arithmetic progressions of arbitrary 
length within the primes is a Szemerédi-type argu-
ment involving so-called pseudo-primes, whatever 
that is. So the ramifications of your theorem have 
been impressive. 

Szemerédi: In their abstract they say that the 
three main ingredients in their proof are the 
Goldstone-Yıldırım result, which gives an estimate 
for the difference of consecutive primes; their 
transference principle; and my theorem on arith-
metic progressions. 

R&S: By the way, according to Green and Tao one 
could have used the Selberg sieve instead. 

Szemerédi: You are right. However, in my 
opinion the main revolutionary new idea is their 
transference principle which enables us to go from 
a dense set to a sparse set. I would like to point 
out that later, while generalizing their theorem, 
they did not have to use my theorem. Terry Tao 
said that he read all the proofs of the Szemerédi 
theorem and compared them, and then he and Ben 
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Because of the mixture of random steps and 
deterministic steps, we called this new technique 
the “semirandom method”. 

Historically, the first serious instance of a result 
of extremal graph theory was the famous theorem 
of Ramsey and, in a quantitative form, of Erdős 
and Szekeres. This result has also played a special 
role in the development of the “random method”. 
Therefore it has always been a special challenge 
for combinatorialists to try to determine the as-
ymptotic behavior of the Ramsey functions R(k,n),2 
as n (or both k and n) tend to infinity. It can be 
easily deduced from our lemma that R(3,n) < cn2/
log n, which solved a long-standing open problem 
of Erdős. Surprisingly, about ten years later, Kim 
proved that the order of magnitude of our bound 
was the best possible. His proof is based on a bril-
liant extension of the “semirandom method”. 

The “semirandom method” has found many 
other applications. For instance, together with 
Komlós and Pintz, I used the same technique 
to disprove a famous geometric conjecture of  
Heilbronn. The conjecture dates back to the 1940s. 
The setting is as follows: you have n points in the 
unit square and you consider the triangles defined 
by these points. Then the conjecture says that 
you can always choose a triangle of area smaller 
than a constant over n2. That was the Heilbronn 
conjecture. For the bound 1/n, this is trivial; then 
Klaus Roth improved this to 1 over n(log log n)½. 
Later Wolfgang Schmidt improved it further to 1 
over n(log n)½. Roth, in a very brilliant and surpris-
ing way, used analysis to prove that we can find 
a triangle of area less than 1 over n(1+α), where α 
is a constant. 

We then proved, using the semirandom method, 
that it is possible to put down n points such that 
the smallest area of a triangle is at least log n over 
n2, disproving the Heilbronn conjecture. Roth told 
us that he gave a series of talks about this proof. 

Further Research Areas 
R&S: It is clear from just checking the literature and 
talking with people familiar with graph theory and 
combinatorics, as well as additive number theory, 
that you, sometimes with coauthors, have obtained 
results that have been groundbreaking and have set 
the stage for some very important developments. 
Apart from the Szemerédi theorem and the regular-
ity lemma that we have already talked about, here 
is a short list of important results that you and your 
coauthors have obtained: 

(i) The Szemerédi-Trotter theorem in the paper 
“Extremal problems in discrete geometry” from 
1983. 

lot of edges—then you can break the vertex set into 
a relatively small number of disjoint vertex sets, 
so that if you take almost any two of these vertex 
sets, between them the so-called bipartite graph 
will behave like a random graph. We can break our 
graph into not too many pieces, so we can work 
with these pieces and we can prove theorems in 
extremal graph theory. 

We can also use it in property testing, which 
belongs to theoretical computer science and many 
other areas. I was surprised that they use it even in 
biology and neuroscience, but I suspect that they 
use it in an artificial way, that they could do with-
out the regularity lemma. But I am not an expert 
on this, so I can’t say this for sure. 

R&S: The regularity lemma really has some 
important applications in theoretical computer 
science?

Szemerédi: Yes, it has, mainly in property 
testing but also in constructing algorithms. Yes, 
it has many important applications. Not only the 
original regularity lemma, but, since this is thirty 
years ago, there have appeared modifications of 
the regularity lemma which are more adapted 
for these purposes. The regularity lemma is for 
me just a philosophy, not an actual theorem. Of 
course, the philosophy is almost everything. That 
is why I like to say that in every chaos there is an 
order. The regularity lemma just says that in every 
chaos there is a big order. 

R&S: Do you agree that the Szemerédi theorem, 
i.e., the proof of the Erdős-Turán conjecture, is your 
greatest achievement? 

Szemerédi: It would be hard to disagree because 
most of my colleagues would say so. However, 
perhaps I prefer another result of mine with Ajtai 
and Komlós. In connection with a question about 
Sidon sequences we discovered an innocent- 
looking lemma. Suppose we have a graph of n 
vertices in which a vertex is connected to at most 
d other vertices. By a classical theorem of Turán, 
we can always find at least n/d vertices such that 
no two of them are connected by an edge. What 
we proved was that under the assumption that the 
graph contains no triangle, a little more is true: one 
can find n/d times log d vertices with the above 
property. 

I am going to describe the proof of the lemma 
very briefly. We choose n/2d vertices of our graph 
randomly. Then we omit all the neighbors of the 
points in the chosen sets. This is, of course, a 
deterministic step. Then in the remaining vertex 
set we again choose randomly n/2d vertices and 
again deterministically omit the neighbors of the 
chosen set. It can be proved that this procedure can 
be repeated log d times and in the chosen set the 
average degree is at most 2. So in the chosen sets 
we can find a set of size at least n/4d such that no 
two points are connected with an edge. 

2R(k,n) denotes the least positive integer N such that for 
any (red/blue)-coloring of the complete graph KN on N ver-
tices, there exists either an entirely red complete subgraph 
on k vertices or an entirely blue subgraph on v vertices.
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problem we try to invent new methods. And it goes 
on and on. Sometimes we actually borrow from 
so-called well-established mathematics. People in 
other areas of mathematics often work in ways that 
are different from how we work in combinatorics. 

Let’s exaggerate somewhat: they have big theo-
ries and they find sometimes a problem for the 
theory. In combinatorics, it is usually the other 
way around. We start with problems that actually 
are both relevant and necessary; that is, the com-
binatorics itself requires the solution of the prob-
lems, the problems are not randomly chosen. You 
then have to find methods that you apply to solve 
the problems and sometimes you might create a 
theory. But you start out by having a problem; you 
do not start by having a theory and then finding 
a problem to which you can apply the theory. Of 
course, that happens from time to time, but it is 
not the major trend. 

Now, in the computer era, it is unquestionable 
that combinatorics is extremely important. If you 
want to run programs efficiently, you have to in-
vent algorithms in advance, and these are basically 
combinatorial in nature. This is perhaps the reason 
why combinatorics today is a little bit elevated, so 
to say, and that mathematicians from other fields 
start to realize this and pay attention. If you look 
at the big results, many of them have big theories 
which I don’t understand, but at the very root there 
is often some combinatorial idea. This discussion 
is a little bit artificial. It’s true that combinatorics 
was a second-rated branch of mathematics thirty 
years ago but hopefully not any longer. 

R&S: Do you agree with Bollobás, who in an in-
terview from 2007 said the following: “The trouble 
with the combinatorial problems is that they do not 
fit into the existing mathematical theories. We much 
more prefer to get help from ‘mainstream’ math-
ematics rather than to use ‘combinatorial’ methods 
only, but this help is rarely forthcoming. However, 
I am happy to say that the landscape is changing.” 

Szemerédi: I might agree with that. 
R&S: Gowers wrote a paper about the two cul-

tures within mathematics. There are problem solv-
ers and there are theory builders. His argument 
is that we need both. He says that the organizing 
principles of combinatorics are less explicit than in 
core mathematics. The important ideas in combi-
natorial mathematics do not usually appear in the 
form of precisely stated theorems but more often 
as general principles of wide applicability. 

Szemerédi: I guess that Tim Gowers is right. But 
there is interplay between the two disciplines. As 
Bollobás said, we borrow from the other branches 
of mathematics if we can when we solve concrete 
discrete problems, and vice versa. I once sat in 
class when a beautiful result in analytic number 
theory was presented. I understood only a part of 
it. The mathematician who gave the talk came to 
the bottleneck of the whole argument. I realized 

(ii) The Erdős–Szemerédi theorem on product-
sum estimates in the paper “On sums and products 
of integers” from 1983. 

(iii) The results obtained by AKS, which is the 
acronym for Miklós Ajtai, János Komlós, and Endre 
Szemerédi. The “sorting algorithm” is among the 
highlights. 

Could you fill in some details, please? 
Szemerédi: (i) Euclid’s system of axioms states 

some of the basic facts about incidences between 
points and lines in the plane. In the 1940s, Paul 
Erdős started asking slightly more complicated 
questions about incidences that even Euclid would 
have understood. How many incidences can occur 
among m points and n lines, where an “incidence” 
means that a line passes through a point? My 
theorem with Trotter confirmed Erdős’s rather 
surprising conjecture: the maximal number of inci-
dences is much smaller in the real plane than in the 
projective one, much smaller than what we could 
deduce by simple combinatorial considerations. 

(ii) Together with Paul Erdős, we discovered 
an interesting phenomenon and made the first 
nontrivial step in exploring it. We noticed, roughly 
speaking, that a set of numbers may have nice ad-
ditive properties or nice multiplicative properties 
but not both at the same time. This has meanwhile 
been generalized to finite fields and other struc-
tures by Bourgain, Katz, Tao, and others. Their re-
sults had far-reaching consequences in seemingly 
unrelated fields of mathematics. 

(iii) We want to sort n numbers, that is, to put 
them in increasing order by using comparisons of 
pairs of elements. Our algorithm is nonadaptive: 
the next comparison never depends on the out-
come of the previous ones. Moreover, the algorithm 
can efficiently run simultaneously on cn proces-
sors such that every number is processed by only 
one of them at a time. Somewhat surprisingly, our 
algorithm does not require more comparisons than 
the best possible adaptive nonparallel algorithm. 
It is well known that any sorting algorithm needs 
at least n log n comparisons. 

R&S: What are, in your opinion, the most interest-
ing and important open problems in combinatorics 
and graph theory?

Szemerédi: I admit that I may be somewhat 
conservative in taste. The problem that I would 
like to see solved is the very first problem of ex-
tremal graph theory: to determine the asymptotic 
behavior of the Ramsey functions. 

Combinatorics Compared to Other Areas of 
Mathematics 
R&S: It is said, tongue in cheek, that a typical com-
binatorialist is a bright mathematician with an 
aversion to learning or embracing abstract math-
ematics. Does this description fit you? 

Szemerédi: I am not sure. In combinatorics we 
want to solve a concrete problem, and by solving a 
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four-color problem, for instance, computer power 
has been indispensable. Do you think that this is a 
trend? Will we see more results of this sort? 

Szemerédi: Yes, there is a trend. Not only for 
this but also for other types of problems as well, 
where computers are used extensively. This trend 
will continue, even though I am not a computer 
expert. I am in the computer science department, 
but fortunately nobody asked me whether I could 
answer email, which I cannot! They just hired me 
because so-called theoretical computer science 
was highly regarded in the late 1980s. Nowadays, 
it does not enjoy the same prestige, though the 
problems are very important, the P versus NP 
problem, for instance. We would like to understand 
computation and how fast it is; this is absolutely 
essential mathematics, and not only for discrete 
mathematics. These problems lie at the heart of 
mathematics, at least in my opinion. 

R&S: May we come back to the P versus NP 
problem, which asks whether every problem whose 
solution can be verified quickly by a computer can 
also be solved quickly by a computer. Have you 
worked on it yourself? 

Szemerédi: I am working on two problems in 
computer science. The first one is the following: 
assume we compute an n-variable Boolean function 
with a circuit. For most of the n-variable Boolean 
functions the circuit size is not polynomial. But 
to the best of my knowledge, we do not know a 
particular function which cannot be computed 
with a Boolean circuit of linear size and depth  
log n. I have no real idea how to solve this problem. 

The second one is the minimum weight span-
ning tree problem. Again, so far I am unsuccessful. 

I have decided that now I will, while keeping 
up with combinatorics, learn more about analytic 
number theory. I have in mind two or three prob-
lems, which I am not going to tell you. It is not the 
Riemann hypothesis, that I can tell. 

R&S: The P versus NP conjecture is on the Clay 
list of problems, the prize money for a solution being 
one million USD, so it has a lot of recognition. 

Szemerédi: Many people believe that the P 
versus NP problem is the most important one in 
current mathematics, regardless of the Riemann 
hypothesis and the other big problems. We should 
understand computation. What is in our power? If 
we can check easily that something is true, can we 
easily find a solution? Most probably not! Almost 
everybody will bet that P is not equal to NP, but 
not too much has been proved. 

Soccer
R&S: You have described yourself as a sports fa-
natic. 

Szemerédi: Yes, at least I was. I wanted to be a 
soccer player, but I had no success.

R&S: We have to stop you there. In 1953, when 
you were thirteen years old, Hungary had a  

that it was a combinatorial statement and if you 
gave it to a combinatorialist, he would probably 
have solved it. Of course, one would have needed 
the whole machinery to prove the result in ques-
tion, but at the root it actually boiled down to a 
combinatorial argument. A real interplay! 

R&S: There is one question that we have asked 
almost all Abel Prize recipients; it concerns the 
development of important new concepts and ideas. 
If you recollect, would key ideas turn up when you 
were working hard at your desk on a problem, or 
did they show up in more relaxed situations? Is 
there any pattern? 

Szemerédi: Actually, both! Sometimes you work 
hard on a problem for half a year and nothing 
comes out. Then suddenly you see the solution, 
and you are surprised and slightly ashamed that 
you hadn’t noticed these trivial things which ac-
tually finish the whole proof and which you did 
not discover for a long time. But usually you work 
hard and step-by-step you get closer to the solu-
tion. I guess that this is the case in every science. 
Sometimes the solution comes out of the blue, but 
sometimes several people are working together 
and find the solution. 

I have to tell you that my success ratio is actually 
very bad. If I counted how many problems I have 
worked on and in how many problems I have been 
successful, the ratio would be very bad. 

R&S: Well, in all fairness, this calculation should 
take into consideration how many problems you 
have tried to solve. 

Szemerédi: Right, that is a nice remark. 
R&S: You have been characterized by your col-

leagues—and this is meant as a huge compliment 
—as having an “irregular mind”. Specifically, you 
have been described as having a brain that is wired 
differently than most mathematicians’ [brains]. 
Many admire your unique way of thinking, your 
extraordinary vision. Could you try to explain to 
us how you go about attacking problems? Is there 
a particular method or pattern? 

Szemerédi: I don’t particularly like the charac-
terization of having an “irregular mind”. I don’t feel 
that my brain is wired differently and I think that 
most neurologists would agree with me. However, 
I believe that having unusual ideas can often be 
useful in mathematical research. It would be nice 
to say that I have a good general approach of at-
tacking mathematical problems. But the truth is 
that after many years of research I still do not have 
any idea what the right approach is. 

Mathematics and Computer Science
R&S: We have already talked about connections 
between discrete mathematics and computer sci-
ence; you are in fact a professor in computer 
science at Rutgers University in the United States. 
Looking back, we notice that for some important 
mathematical theorems, like the solution of the 
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that I would receive the Abel Prize. The last ques-
tion from one of them was about the impending Eu-
ropean Cup quarter-final match between Barcelona 
and Milan. I said that up to now I have answered 
your questions without hesitation, but now I need 
three minutes. I reasoned that the defense of Barce-
lona was not so good (their defender Puyol is a bit 
old), but their midfield and attack are good, so: 3 to 
1 to Barcelona. On the day the game was played, the 
paper appeared with my—as it turned out—correct 
prediction. I was very proud of this, and people on 
these blogs wrote that I could be very rich if I would 
enter the odds-prediction business! 

R&S: We can at least tell you that you are by far 
the most sports-interested person we have met so 
far in these Abel interviews! 

On behalf of the Norwegian, Danish, and Eu-
ropean Mathematical Societies, and on behalf of 
the two of us, thank you very much for this most 
interesting interview. 

Szemerédi: Thank you very much. I am very 
happy for the opportunity of talking to you. 

fantastic soccer team; they were called The Mighty 
Magyars. They were the first team outside the Brit-
ish Isles that beat England at Wembley and even by 
the impressive score of 6 to 3. At the return match 
in Budapest in 1954 they beat England 7 to 1, a 
total humiliation for the English team. Some of these 
players on the Hungarian team are well known in 
the annals of soccer, names like Puskás, Hidegkuti, 
Czibor, Bozsik, and Kocsis. 

Szemerédi: Yes. These five were world-class 
players. 

R&S: We have heard that the Hungarian team, 
before the game in Budapest, lived at the same place 
as you did. Bozsik watched you play soccer, and he 
said that you had real talent. Is this a true story? 

Szemerédi: Yes, that is true, except that they did 
not live at the same place. My mother died early; 
this is why we three brothers lived at a boarding 
school. That school was very close to the hotel 
where the Hungarian team lived. They came some-
times to our soccer field to relax and watch our 
games, and one time we had a very important game 
against the team that was our strongest competi-
tor. You know, boarding schools were competing 
like everyone else. 

I was a midfielder like Bozsik. I was small and 
did not have the speed, but I understood the Hun-
garian team’s strategy. They revolutionized the 
soccer game, foreshadowing what was later called 
“Total Football”. They did not pass the ball to the 
nearest guy, but rather they aimed the ball to create 
space and openings, often behind the other team’s 
defense. That was a completely different strategy 
than the standard one, and therefore they were 
extremely effective. 

I studied this and I understood their strategy 
and tried to imitate it. Bozsik saw this and he un-
derstood what I was trying to do. 

R&S: You must have been very proud. 
Szemerédi: Yes, indeed I was very proud. He 

was nice, and his praise is still something which I 
value very much. 

R&S: Were you very disappointed with the World 
Cup later that year? As you very well know, the 
heavily favored Hungarian team first beat West 
Germany 8 to 3 in the preliminary round, but then 
they lost 2 to 3 in the final to West Germany. 

Szemerédi: Yes. It was very unfortunate. Puskás 
was injured, so he was not at his best, but we had 
some other problems, too. I was very, very sad 
and for months I practically did not speak to any-
body. I was a real soccer fan. Much later, in 1995, 
a friend of mine was the ambassador for Hungary 
in Cairo, and I visited him. Hidegkuti came often 
to the embassy because he was the coach for the 
Egyptian team. I tried to make him explain to me 
what happened in 1954, but I got no answer. 

By the way, to my big surprise I quite often guess 
correct results. Several journalists came to me in 
Hungary for an interview after it was announced 


