The following article is Open access

High-Aspect Ratio Bio-Metallic Nanocomposites for Cellular Interactions

, , and

Published under licence by IOP Publishing Ltd
, , Citation Sneha Deodhar et al 2014 IOP Conf. Ser.: Mater. Sci. Eng. 64 012014 DOI 10.1088/1757-899X/64/1/012014

1757-899X/64/1/012014

Abstract

We synthesized high aspect ratio composites with biological and metal components. Scanning electron microscopy (SEM) and Transmission Electron Microscopy (TEM) revealed linear morphology and smooth surface texture. SEM, TEM and light microscopy showed that composites have scalable dimensions from nano- to micro-, with diameters as low as 60 nm, lengths exceeding 150 pm, and average aspect ratio of 100. The structures are stable, remaining intact for over one year in dried form and in liquid, and did not aggregate, in contrast to metal nanoparticles such as iron and copper. Many metal nanoparticles are toxic to cells, limiting their use for biological applications. The bio-metallic composites characterized here showed lower toxicity compared to their precursor metal nanoparticles in brain tumor cell cultures. Due to these more biocompatible properties, we tested the ability of the composites to interact with cells. Zeta potential analysis indicated that composites carry a net negative charge (-24.3 ± 2.2 mV), while the starting metal nanoparticles measured (43.3 ± 2.4 mV). We labeled the composites with poly-l-lysine fluorescein isothiocyanate (PLL-FITC), which shifted the potential to 3.5 ± 2.9 mV. It was observed by fluorescence microscopy that composites smaller than cells were internalized by some cells and larger composites remained outside. Cells became fluorescent over time due to leakage of PLL-FITC from the composites which lost fluorescence over time. Higher biocompatibility, low aggregation, and ability to control size distribution of the linear composites may make them ideal vehicles to deliver drugs or other materials to cells, and may be used as a scaffolding material for cells.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.