Paper The following article is Open access

Reduction of discomfort in pushing an industrial trolley using ergonomics

, , and

Published under licence by IOP Publishing Ltd
, , Citation M Wilson Kumar et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 263 062042 DOI 10.1088/1757-899X/263/6/062042

1757-899X/263/6/062042

Abstract

Poor design of industrial trolleys lead to more compressive stress on the low back of industrial workers. The research work reported in this paper recommends a handle height of an industrial trolley for use by the local population, which reduces the compressive stress on the low back. Experiments were conducted in a laboratory on five subjects of varying stature 165, 173, 174, 175 and 182 cm, with five different handle heights 90, 95, 100, 105 and 110 cm. A four wheeled trolley has been used to conduct the experiments. Caster wheels diameters of 100, 125 and 150 mm made of polyurethane were used. It is found that a handle height of 110 cm allows the users to exert minimum force during the initial pushing. A biomechanical model was employed to calculate the compressive force experienced by L5/S1 disc and it is found that the compressive load will be the least when the handle height is 110 cm. Optimization of handle height using Genetic Algorithm approach, Heart rate analysis and EMG analysis confirm that a handle height of 110 cm and a wheel diameter of 150 mm will reduce the discomfort of industry workers pushing trolleys.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/263/6/062042