Paper The following article is Open access

A POD reduced-order model for wake steering control

, , , and

Published under licence by IOP Publishing Ltd
, , Citation A Fortes-Plaza et al 2018 J. Phys.: Conf. Ser. 1037 032014 DOI 10.1088/1742-6596/1037/3/032014

1742-6596/1037/3/032014

Abstract

Wake steering by active yawing of upstream wind turbines is a promising wind plant control technique. To enable the development of model-based wind plant control methods, there is a need for models that can marry the contrasting requirements of good fidelity and low computational cost. This paper presents a reduced-order model (ROM) obtained by directly compressing high-fidelity computational fluid dynamics (CFD) simulation data using the proper orthogonal decomposition (POD) method. At first, simulations of wake-interacting wind turbines are obtained for time-varying yaw settings using the lifting-line large-eddy simulation (LES) code SOWFA. Next, a ROM is synthesized from the CFD transient simulations, obtaining a discrete-time state-space model that captures the dominant dynamics of the underlying high-fidelity model with only a reduced number of states. The ROM is optionally augmented with a Kalman filter, which feeds back turbine power measurements from the plant to the model, enhancing its accuracy. Results obtained in realistic turbulent conditions show a good agreement between high-fidelity CFD solutions and the proposed POD-based ROM in terms of wake behavior and power output of waked turbines. Additionally, the ROM presents acceptable results when compared to wind tunnel experiments, including the capability of the model to partially correct for an intentionally built-in model mismatch.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1037/3/032014