Brought to you by:
paper The following article is Open access

Effects of fragmentation on post-inflationary reheating

, , , , and

Published 13 December 2023 © 2023 The Author(s)
, , Citation Marcos A.G. Garcia et al JCAP12(2023)028 DOI 10.1088/1475-7516/2023/12/028

1475-7516/2023/12/028

Abstract

We consider the effects of fragmentation on the post-inflationary epoch of reheating. In simple single field models of inflation, an inflaton condensate undergoes an oscillatory phase once inflationary expansion ends. The equation of state of the condensate depends on the shape of the scalar potential, V(ϕ), about its minimum. Assuming V(ϕ) ∼ ϕk, the equation of state parameter is given by w = Pϕ/ρϕ = (k - 2)/(k + 2). The evolution of condensate and the reheating process depend on k. For k ≥ 4, inflaton self-interactions may lead to the fragmentation of the condensate and alter the reheating process. Indeed, these self-interactions lead to the production of a massless gas of inflaton particles as w relaxes to 1/3. If reheating occurs before fragmentation, the effects of fragmentation are harmless. We find, however, that the effects of fragmentation depend sensitively to the specific reheating process. Reheating through the decays to fermions is largely excluded since perturbative couplings would imply that fragmentation occurs before reheating and in fact could prevent reheating from completion. Reheating through the decays to boson is relatively unaffected by fragmentation and reheating through scatterings results in a lower reheating temperature.

Export citation and abstract BibTeX RIS

Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1475-7516/2023/12/028