Paper

Normal regime of the weak-current mode of an rf capacitive discharge

, , , , , , and

Published 21 December 2012 © 2013 IOP Publishing Ltd
, , Citation V Lisovskiy et al 2013 Plasma Sources Sci. Technol. 22 015018 DOI 10.1088/0963-0252/22/1/015018

0963-0252/22/1/015018

Abstract

This paper studies the normal and abnormal regimes of a weak-current rf discharge in ammonia, nitrogen, hydrogen and N2O for the rf electric field frequencies of 13.56 and 27.12 MHz. We reveal that only the abnormal regime of burning is observed at low pressures when the current growth is accompanied by an rf voltage increase while the surface of the electrodes is completely covered with the discharge. The normal regime occurs at higher gas pressures when the current growth is due to the increase in the surface area occupied by the discharge on the electrodes. The discharge burns in the abnormal mode after the surface of the electrodes is completely covered with the discharge. We demonstrate that the normal current density is directly proportional to the gas pressure and it depends approximately on the square of the rf electric field frequency. We present an analytical model for two limiting cases: constant free path length and constant mobility of positive ions furnishing a satisfactory description of the experimental data.

Export citation and abstract BibTeX RIS

Access this article

The computer you are using is not registered by an institution with a subscription to this article. Please choose one of the options below.

Login

IOPscience login

Find out more about journal subscriptions at your site.

Purchase from

Article Galaxy
CCC RightFind

Purchase this article from our trusted document delivery partners.

Make a recommendation

To gain access to this content, please complete the Recommendation Form and we will follow up with your librarian or Institution on your behalf.

For corporate researchers we can also follow up directly with your R&D manager, or the information management contact at your company. Institutional subscribers have access to the current volume, plus a 10-year back file (where available).

Please wait… references are loading.
10.1088/0963-0252/22/1/015018