The following article is Free article

Storing elastic energy in carbon nanotubes

, , and

Published 26 August 2009 2009 IOP Publishing Ltd
, , Citation F A Hill et al 2009 J. Micromech. Microeng. 19 094015 DOI 10.1088/0960-1317/19/9/094015

0960-1317/19/9/094015

Abstract

The potential performance of carbon nanotubes (CNTs) as springs for elastic energy storage is evaluated. Models are used to determine an upper bound on the energy density that can be stored in defect-free individual CNTs and in assemblies of such CNTs. The models reveal that optimal energy density may be achieved in small-diameter single-walled CNTs loaded in tension, with a maximum theoretical energy density for CNT groupings of 7.8 × 106 kJ m−3. Millimeter-scale CNT springs are constructed using 3 mm tall forests of multi-walled CNTs as the starting material, and tensile tests are performed to measure the springs' stiffness, strength and elastic properties. The measured strain energy density of these continuous CNT fibers is comparable to the energy density of steel springs.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1088/0960-1317/19/9/094015