Paper The following article is Open access

On the comparison of optimization algorithms for the random-field Potts model

and

Published under licence by IOP Publishing Ltd
, , Citation Manoj Kumar and Martin Weigel 2022 J. Phys.: Conf. Ser. 2241 012003 DOI 10.1088/1742-6596/2241/1/012003

1742-6596/2241/1/012003

Abstract

For many systems with quenched disorder the study of ground states can crucially contribute to a thorough understanding of the physics at play, be it for the critical behavior if that is governed by a zero-temperature fixed point or for uncovering properties of the ordered phase. While ground states can in principle be computed using general-purpose optimization algorithms such as simulated annealing or genetic algorithms, it is often much more efficient to use exact or approximate techniques specifically tailored to the problem at hand. For certain systems with discrete degrees of freedom such as the random-field Ising model, there are polynomial-time methods to compute exact ground states. But even as the number of states increases beyond two as in the random-field Potts model, the problem becomes NP hard and one cannot hope to find exact ground states for relevant system sizes. Here, we compare a number of approximate techniques for this problem and evaluate their performance.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/2241/1/012003