The surface of Venus

and

Published 10 September 2003 2003 IOP Publishing Ltd
, , Citation Alexander T Basilevsky and James W Head 2003 Rep. Prog. Phys. 66 1699 DOI 10.1088/0034-4885/66/10/R04

0034-4885/66/10/1699

Abstract

Venus is a planet that is similar to Earth in terms of some important planetary parameters (size, mass, position in the solar system, presence of atmosphere) and different in terms of other, equally important ones (absence of an intrinsic magnetic field, large atmospheric mass, carbon dioxide composition of the atmosphere, lack of water, very high surface pressure and temperature). The surface morphology of Venus is dominated by the signatures of basaltic volcanism and tectonic deformation. Other geological processes such as impact cratering, aeolian activity and gravity-driven down-slope mass movement, although active on the planet, are certainly of subordinate significance. Venusian volcanism resulted in the formation of vast regional plains, occupying most of the planet's surface, and in the building of numerous volcanic edifices. Venusian tectonic deformation was both compressional and extensional. Scales and, periodically, rates of Venusian volcanism and tectonism were comparable to those on Earth. But Venus shows no evidence of the global plate-tectonic style so dominant in the geology of Earth. The morphological record seen in the Magellan radar images of Venus extends back into geological history not earlier than about 0.5–1 billion years. It is represented by a sequence of units from highly tectonized tessera and densely fractured plains, whose compositional nature is unclear, through moderately deformed basaltic lava plains, and then to only locally deformed basaltic plains and edifices. In the beginning of the time period during which this sequence formed, the rates of volcanic and tectonic activity were significantly higher than in the subsequent time extending to the present. This change in volcanic and tectonic activity may correspond to a change in the convection style in the mantle of Venus.

Export citation and abstract BibTeX RIS

Please wait… references are loading.