How Special Are Dark Gamma-Ray Bursts: A Diagnostic Tool

, , , , and

© 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A.
, , Citation Evert Rol et al 2005 ApJ 624 868 DOI 10.1086/429082

0004-637X/624/2/868

Abstract

We present here a comprehensive study of the optical/near-infrared (IR) upper limits for gamma-ray bursts that have an X-ray afterglow. We have extrapolated the X-ray afterglows to optical wavelengths based on the physics of the fireball blast wave model and compared these results with optical upper limits for a large sample of bursts. We find a small set of only three bursts out of a sample of 20 for which the upper limits are not compatible with their X-ray afterglow properties within the context of any blast wave model. This sparse sample does not allow us to conclusively determine the cause of this optical/near-IR deficit. Extinction in the host galaxy is a likely cause, but high redshifts and different afterglow mechanisms might also explain the deficit in some cases. We note that the three bursts appear to have higher than average gamma-ray peak fluxes. In a magnitude versus time diagram the bursts are separated from the majority of bursts with a detected optical/near-IR afterglow. However, two gamma-ray bursts with an optical afterglow (one of which is highly reddened) also fall in this region with dark bursts, making it likely that dark bursts are at the faint end of the set of optically detected bursts, and therefore the dark bursts likely form a continuum with the bursts with a detected optical afterglow. Our work provides a useful diagnostic tool for follow-up observations for potentially dark bursts; applied to the events detected with the Swift satellite, it will significantly increase our sample of truly dark bursts and shed light upon their nature.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1086/429082