A publishing partnership

A Parameter Study of Type II Supernova Light Curves Using 6 M He Cores

© 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.
, , Citation Timothy R. Young 2004 ApJ 617 1233 DOI 10.1086/425675

0004-637X/617/2/1233

Abstract

Results of numerical calculations of Type II supernova light curves are presented. The model progenitor stars have 6 M cores and various envelopes, originating from a numerically evolved 20 M star. Five parameters that affect the light curves are examined: the ejected mass, the progenitor radius, the explosion energy, the 56Ni mass, and the extent of 56Ni mixing. The following effects have been found: (1) the larger the progenitor radius, the brighter the early-time light curve, with little effect on the late-time light curve; (2) the larger the envelope mass, the fainter the early light curve and the flatter the slope of the late light curve; (3) the larger the explosion energy, the brighter the early light curve and the steeper the slope of the late light curve; (4) the larger the 56Ni mass, the brighter the overall light curve after 20-50 days, with no effect on the early light curve; and (5) the more extensive the 56Ni mixing, the brighter the early light curve and the steeper the late light curve. The primary parameters affecting the light-curve shape are the progenitor radius and the ejected mass. The secondary parameters are the explosion energy, 56Ni mass, and 56Ni mixing. I find that while in principle the general shape and absolute magnitude of a light curve indicate a unique set of parameters, in practice it is difficult to avoid some ambiguity in the parameters. I find that the nickel-powered diffusion wave and the recombination of helium produce a prominent secondary peak in all our calculations. The feature is less prominent when compositional mixing, both 56Ni mixing and mixing between the hydrogen and helium layers, occurs. The model photospheric temperatures and velocities are presented, for comparison to observation.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1086/425675