This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Brought to you by:

UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI

and

© 1995. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.
, , Citation C. Megan Urry and Paolo Padovani 1995 PASP 107 803 DOI 10.1086/133630

1538-3873/107/715/803

ABSTRACT

The appearance of active galactic nuclei (AGN) depends so strongly on orientation that our current classification schemes are dominated by random pointing directions instead of more interesting physical properties. Light from the centers of many AGN is obscrued by optically thick circumstellar matter, particularly at optical and ultraviolet wavelengths. In radio-loud AGN, bipolar jets emanating from the nucleus emit radio through gamma-ray light that is relativistically beamed along the jet axes. Understanding the origin and magnitude of radiation anistropies in AGN allows us to unify different classes of AGN; that is, to identify each single, underlying AGN type that gives rise to different classes through different orientations. This review describes the unification of radio-loud AGN, which includes radio galaxies, quasars, and blazars. We describe the classification and general properties of AGN. We summarize the evidence for anisotropic emission caused by circumstellar obscuration and relativistic beaming. We outline the two most plausible unified schemes for radio-loud AGN, one linking the high-luminosity sources (BL Lac objects and less luminous radio galaxies). Using the formalism appropriate to samples biased by relativistic beaming, we show the population statistics for two schemes are in accordance with available data. We analyze the possible connections between low- and high-luminosity radio-loud AGN and conclude they probably are powered by similar physical processes, at least within the relativistic jet. We review potential difficulties with unification and conclude that none currently constitutes a serious problem. We discuss likely complications to unified schemes that are suggested by realistic physical considerations; these will be important to consider when more comprehensive data for larger complete samples become available. We conclude with a list of the ten questions we believe are the most pressing in this field.

Export citation and abstract BibTeX RIS