Skip to main content
Log in

The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain

  • Original Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Sensorimotor synchronization (SMS) is the rhythmic synchronization between a timed sensory stimulus and a motor response. This rather simple function requires complex cerebral processing whose basic mechanisms are far from clear. The importance of SMS is related to its hypothesized relevance in motor recovery following brain lesions. This is witnessed by the large number of studies in different disciplines addressing this issue. In the present review we will focus on the role of the cerebellum by referring to the general modeling of SMS functioning. Although at present no consensus exists on cerebellar timekeeping function it is generally accepted that cerebellar input and output flow process time information. Reviewed data are considered within the framework of the ‘sensory coordination’ hypothesis of cerebellar functioning. The idea that timing might be within the parameters that are under cerebellar control to optimize cerebral cortical functioning is advanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thaut MH, Kenyon GP. Rapid motor adaptations to subliminal frequency shifts during syncopated rhytmic sensorimotor synchronization. Human Movement Sci. 2003;22:321–38.

    Article  Google Scholar 

  2. Thaut MH, Kenyon GP. Response to Bruno Repp’s comments on ‘Rapid motor adaptations to subliminal frequency shifts during syncopated rhythmic sensorimotor synchronization’ by Michael H. Thaut and Gary P. Kenyon (Human Movement Science 22 [2003] 321–38). Human Movement Sci. 2004;23(1):79–86.

  3. Repp BH. Comments on ‘Rapid motor adaptations to subliminal frequency shifts during syncopated rhythmic sensorimotor synchronization’ by Michael H. Thaut and Gary P. Kenyon (Human Movement Science 22 [2003] 321–38). Human Movement Sci. 2004;23(1):61–77.

    Google Scholar 

  4. Repp BH. Sensorimotor synchronization: A review of the tapping literature. Psychon Bull Rev. 2005;12(6):969–92.

    PubMed  Google Scholar 

  5. Ivry RB, Spencer RMC. Evaluating the role of the cerebellum in temporal processing: beware of the null hypothesis. Brain. 2004;127(8).

  6. Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT. Reply to: Evaluating the role of the cerebellum in temporal processing: beware of the null hypothesis. Brain. 2004; 127(8).

  7. Mates J. A model of synchronization of motor acts to a stimulus sequence. I. Timing and error corrections. Biol Cybern. 1994;70(5):463–73.

    Article  PubMed  CAS  Google Scholar 

  8. Haken H, Kelso JAS, Bunz H. A theoretical model of phase transitions in human hand movements. Biol Cybern. 1985;51(5):347–56.

    Article  PubMed  CAS  Google Scholar 

  9. Mitra S, Riley MA, Turvey MT. Chaos in human rhythmic movement. J Mot Behav. 1997;29(3):195–8.

    PubMed  Google Scholar 

  10. Ivry RB. The representation of temporal information in perception and motor control. Curr Opin Neurobiol. 1996;6(6):851–7.

    Article  PubMed  CAS  Google Scholar 

  11. Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol. 2004;14(2):225–32.

    Article  PubMed  CAS  Google Scholar 

  12. Tesche CD, Karhu JJ. Anticipatory cerebellar responses during somatosensory omission in man [see comments]. Hum Brain Mapp. 2000;9(3):119–42.

    Article  PubMed  CAS  Google Scholar 

  13. Braitenberg V, Heck D, Sultan F. The detection and generation of sequences as a key to cerebellar function: Experiments and theory. Behaviour Brain Sci. 1997;20: 229–77.

    CAS  Google Scholar 

  14. Ohyama T, Nores WL, Murphy M, Mauk MD. What the cerebellum computes. Trends Neurosci. 2003;26(4):222–7.

    Article  PubMed  CAS  Google Scholar 

  15. Xu D, Liu T, Ashe J, Bushara KO. Role of the olivocerebellar system in timing. J Neurosci. 2006;26(22):5990–5.

    Article  PubMed  CAS  Google Scholar 

  16. Lang EJ, Sugihara I, Llinas R. Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat. J Physiol. 2006;571(Pt 1):101–20.

    Article  PubMed  CAS  Google Scholar 

  17. Malapani C, Dubois B, Rancruel G, Gibbon J. Cerebellar dysfunction of temporal processing in the second range in humans. Neuroreport. 1998;9:3907–12.

    Article  PubMed  CAS  Google Scholar 

  18. Nichelli P, Alway D, Grafman J. Perceptual timing in cerebellar degeneration. Neuropsychologia. 1996;34(9): 863–71.

    Article  PubMed  CAS  Google Scholar 

  19. Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Curr Opin Neurobiol. 2003;13(2):250–5.

    Article  PubMed  CAS  Google Scholar 

  20. Jantzen KJ, Steinberg FL, Kelso JA. Functional MRI reveals the existence of modality and coordination-dependent timing networks. Neuroimage. 2005;25(4): 1031–42.

    Article  PubMed  CAS  Google Scholar 

  21. Renoult L, Roux S, Riehle A. Time is a rubberband: Neuronal activity in monkey motor cortex in relation to time estimation. Eur J Neurosci. 2006;23(11):3098–108.

    Article  PubMed  Google Scholar 

  22. Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci. 2002;978:302–17.

    Article  PubMed  Google Scholar 

  23. Ito M. Bases and implications of learning in the cerebellum-adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.

    PubMed  Google Scholar 

  24. Molinari M, Filippini V, Leggio MG. Neuronal plasticity of interrelated cerebellar and cortical networks. Neuroscience. 2002;111(4):863–70.

    Article  PubMed  CAS  Google Scholar 

  25. Riecker A, Kassubek J, Groschel K, Grodd W, Ackermann H. The cerebral control of speech tempo: Opposite relationship between speaking rate and BOLD signal changes at striatal and cerebellar structures. Neuroimage. 2006;29(1):46–53.

    PubMed  Google Scholar 

  26. Salman MS. The cerebellum: It’s about time! But timing is not everything-new insights into the role of the cerebellum in timing motor and cognitive tasks. J Child Neurol. 2002;17(1):1–9.

    Article  PubMed  Google Scholar 

  27. Diener HC, Hore J, Ivry R, Dichgans J. Cerebellar dysfunction of movement and perception. Can J Neurological Sci. 1993;20[Suppl. 3]:S62–9.

    Google Scholar 

  28. McNaughton S, Timmann D, Watts S, Hore J. Overarm throwing speed in cerebellar subjects: Effect of timing of ball release. Exp Brain Res. 2004;154:470–8.

    Article  PubMed  CAS  Google Scholar 

  29. Ivry RB, Keele SW, Diener HC. Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res. 1988;73(1):167–80.

    Article  PubMed  CAS  Google Scholar 

  30. Molinari M, Leggio MG, Filippini V, Gioia MC, Cerasa A, Thaut MH. Sensorimotor transduction of time information is preserved in subjects with cerebellar damage. Brain Res Bull. 2005;67(6):448–58.

    Article  PubMed  Google Scholar 

  31. Nawrot M, Rizzo M. Motion Perception deficits from midline cerebellar lesions in human. Vision Res. 1995;35(5):723–31.

    Article  PubMed  CAS  Google Scholar 

  32. Spencer RM, Zelaznik HN, Diedrichsen J, Ivry RB. Disrupted timing of discontinous but not continuos movements by cerebellar lesions. Science. 2003;300:1437–9.

    Article  PubMed  CAS  Google Scholar 

  33. Jueptner M, Flerich L, Weiller C, Mueller SP, Diener HC. The human cerebellum and temporal information processing results from a PET experiment. Neuroreport. 1996;7(15-17):2761–5.

    Article  PubMed  CAS  Google Scholar 

  34. Penhune VB, Zattore RJ, Evans AC. Cerebellar contributions to motor timing: A PET study of auditory and visual rhythm reproduction. J Cogn Neurosci. 1998;10(6):752–65.

    Article  PubMed  CAS  Google Scholar 

  35. Bower JM, Parsons LM. Rethinking the “lesser brain”. Sci Am. 2003;289(2):50–7.

    Article  PubMed  Google Scholar 

  36. Rao SM, Mayer AR, Harrington DL. The evolution of brain activation during temporal processing. Nat Neurosci. 2001;4(3):317–23.

    Article  PubMed  CAS  Google Scholar 

  37. Harrington DL, Lee RC, Boyd LA, Rapcsak SZ, Knight RT. Does the representation of time depend on the cerebellum? Effects of cerebellar stroke. Brain. 2004;127:561–74.

    Article  PubMed  Google Scholar 

  38. Sanes JN, De Martin M, Weckelf J, Thaut MH. Brain activation patterns for producing symmetrically and asymmetrically synchronized movement rhythms. Neuroimage. 2001;13(6):1249.

    Article  Google Scholar 

  39. Parsons LM. Exploring the functional neruoanatomy of music performance, perception and comprehension. Ann N Y Acad Sci. 2001;930:211–29.

    PubMed  CAS  Google Scholar 

  40. Stephan KM, Thaut MH, Schicks W, Wunderlich G, Tellmann L, Herzog H, et al. Cortico-cerebellar circuits and temporal adjustments of motor behaviour. Washington, DC: Society for Neuroscience, 2002. Online. Program 2002 Abstract Viewer/Itinerary Planner., No. 462.8, 2002.

    Google Scholar 

  41. Stephan KM, Thaut MH, Wunderlich G, Schicks W, Tian B, Tellmann L, et al. Conscious and subconscious sensorimotor synchronization-prefrontal cortex and the influence of awareness. Neuroimage. 2002; 15 (2): 345–52.

    Article  PubMed  CAS  Google Scholar 

  42. Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6(4):297–311.

    Article  PubMed  CAS  Google Scholar 

  43. Boyden ES, Katoh A, Raymond JL. Cerebellum-dependent learning: The role of multiple plasticity mechanisms. Ann Rev Neurosci. 2004;27(1):581–609.

    Article  PubMed  CAS  Google Scholar 

  44. Cooke SF, Attwell PJE, Yeo CH. Temporal properties of cerebellar-dependent memory consolidation. J Neurosci. 2004;24(12):2934–41.

    Article  PubMed  CAS  Google Scholar 

  45. Marr D. A theory of cerebellar cortex. J Physiol. 1969; 202(2):437–70.

    PubMed  CAS  Google Scholar 

  46. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.

    Article  Google Scholar 

  47. Ito M. A new physiological concept on cerebellum. Rev Neurol. 1990;146(10):564–9.

    PubMed  CAS  Google Scholar 

  48. Davidson PR, Wolpert DM. Motor learning and prediction in a variable environment. Curr Opin Neurobiol. 2003; 13 (2): 232–7.

    Article  PubMed  CAS  Google Scholar 

  49. Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cognit Sci. 1998;2(9):338–47.

    Article  Google Scholar 

  50. Platel H, Price C, Baron JC, Wise R, Lambert J, Frackowiak RS, et al. The structural components of music perception. A functional anatomical study. Brain. 1997;120(2):229–43.

    Article  PubMed  Google Scholar 

  51. Bower JM. Control of sensory data acquisition. Int Rev Neurobiol. 1997;41:489–513.

    PubMed  CAS  Google Scholar 

  52. Parsons LM, Fox PT. Sensory and cognitive functions. Int Rev Neurobiol. 1997;41:255–71.

    Article  PubMed  CAS  Google Scholar 

  53. Yarom Y, Cohen D. The olivocerebellar system as a generator of temporal patterns. Ann NY Acad Sci. 2002;978: 122–34.

    Article  PubMed  CAS  Google Scholar 

  54. Andre P, Arrighi P. Hipnic modulation of cerebellar information processing: Implications for the cerebro-cerebellar dialogue. Cerebellum. 2003;2(2):84–95.

    Article  PubMed  Google Scholar 

  55. Raymond JL, Lisberger SG, Mauk MD. The cerebellum: A neuronal learning machine. Science. 1996;272(5265): 1126–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Molinari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molinari, M., Leggio, M.G. & Thaut, M.H. The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. Cerebellum 6, 18–23 (2007). https://doi.org/10.1080/14734220601142886

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220601142886

Key words

Navigation