Skip to main content
Log in

Interactions between Purkinje neurones and Bergmann glia

  • Review Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Throughout the development of the cerebellar cortex, Purkinje neurones interact closely with Bergmann glial cells, a specialized form of astrocyte. This review summarizes the intimate developmental, anatomical and functional relationships between these two cell types, with particular emphasis on recent discoveries regarding glutamate release from climbing and parallel fibres as a pathway for signalling synaptic activity to Bergmann glia

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araque A, Carmignoto G, Haydon PG. Dynamic signaling between astrocytes and neurons. Annu Rev Physiol. 2001; 63:795–813.

    PubMed  CAS  Google Scholar 

  2. Verkhratsky A, Orkand RK, Kettenmann H. Glial calcium: homeostasis and signaling function. Physiol Rev. 1998;78: 99–141.

    PubMed  CAS  Google Scholar 

  3. Carmignoto G. Reciprocal communication systems between astrocytes and neurones. Prog Neurobiol. 2000;62:561–81.

    PubMed  CAS  Google Scholar 

  4. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science. 2001;291: 657–61.

    PubMed  CAS  Google Scholar 

  5. Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron. 2004;43:729–43.

    PubMed  CAS  Google Scholar 

  6. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 2003;6:43–50.

    PubMed  CAS  Google Scholar 

  7. Kang J, Jiang L, Goldman SA, Nedergaard M. Astrocytemediated potentiation of inhibitory synaptic transmission. Nat Neurosci. 1998;1:683–92.

    PubMed  CAS  Google Scholar 

  8. Smit AB, Syed NI, Schaap D, van Minnen J, Klumperman J, Kits KS, et al. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature. 2001;411: 261–8.

    PubMed  CAS  Google Scholar 

  9. Palay SL, Chan-Palay V. Cerebellar Cortex. Cytology and Organization. Berlin: Springer-Verlag, 1974.

    Google Scholar 

  10. Grosche J, Kettenmann H, Reichenbach A. Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res. 2002;68:138–49.

    PubMed  CAS  Google Scholar 

  11. Newman E, Reichenbach A. The Muller cell: a functional element of the retina. Trends Neurosci. 1996;19:307–12.

    PubMed  CAS  Google Scholar 

  12. Kettenmann H, Ransom B. Neuroglia. New York: Oxford University Press, 1995.

    Google Scholar 

  13. Rakic P. Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study inMacacus rhesus. J Comp Neurol. 1971;141:283–312.

    PubMed  CAS  Google Scholar 

  14. Yamada K, Fukaya M, Shibata T, Kurihara H, Tanaka K, Inoue Y, et al. Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J Comp Neurol. 2000;418:106–20.

    PubMed  CAS  Google Scholar 

  15. Lordkipanidze T, Dunaevsky A. Purkinje cell dendrites grow in alignment with Bergmann glia. Glia. 2005;51:229–34.

    PubMed  Google Scholar 

  16. Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, et al. DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nat Neurosci. 2005;8:873–80.

    PubMed  CAS  Google Scholar 

  17. Muller T, Fritschy JM, Grosche J, Pratt GD, Mohler H, Kettenmann H. Developmental regulation of voltage-gated K+ channel and GABAA receptor expression in Bergmann glial cells. J Neurosci. 1994;14:2503–14.

    PubMed  CAS  Google Scholar 

  18. Muller T, Moller T, Berger T, Schnitzer J, Kettenmann H. Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science. 1992;256:1563–6.

    PubMed  CAS  Google Scholar 

  19. Clark BA, Barbour B. Currents evoked in Bergmann glial cells by parallel fibre stimulation in rat cerebellar slices. J Physiol. 1997;502(Pt 2):335–50.

    PubMed  CAS  Google Scholar 

  20. Bergles DE, Dzubay JA, Jahr CE. Glutamate transporter currents in bergmann glial cells follow the time course of extrasynaptic glutamate. Proc Natl Acad Sci USA. 1997; 94:14821–5.

    PubMed  CAS  Google Scholar 

  21. Bellamy TC, Ogden D. Short-term plasticity of Bergmann glial cell extrasynaptic currents during parallel fibre stimulation in rat cerebellum. Glia. 2005;52:325–35.

    PubMed  Google Scholar 

  22. Riquelme R, Miralles CP, De Blas AL. Bergmann glia GABA(A) receptors concentrate on the glial processes that wrap inhibitory synapses. J Neurosci. 2002;22:10720–30.

    PubMed  CAS  Google Scholar 

  23. Muller T, Moller T, Neuhaus J, Kettenmann H. Electrical coupling among Bergmann glial cells and its modulation by glutamate receptor activation. Glia. 1996;17:274–84.

    PubMed  CAS  Google Scholar 

  24. Yamada K, Watanabe M. Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int. 2002;77:94–108.

    PubMed  Google Scholar 

  25. Muller T, Kettenmann H. Physiology of Bergmann glial cells. Int Rev Neurobiol. 1995;38:341–59.

    Article  PubMed  CAS  Google Scholar 

  26. Sotelo C. Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol. 2004;72:295–339.

    PubMed  CAS  Google Scholar 

  27. Xu-Friedman MA, Harris KM, Regehr WG. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J Neurosci. 2001;21:6666–72.

    PubMed  CAS  Google Scholar 

  28. Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H. Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci. 1999;2:139–43.

    PubMed  CAS  Google Scholar 

  29. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, et al. Localization of neuronal and glial glutamate transporters. Neuron. 1994;13:713–25.

    PubMed  CAS  Google Scholar 

  30. Wadiche JI, Kavanaugh MP. Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J Neurosci. 1998;18:7650–61.

    PubMed  CAS  Google Scholar 

  31. Klockner U, Storck T, Conradt M, Stoffel W. Electrogenic L-glutamate uptake inXenopus laevis oocytes expressing a cloned rat brain L-glutamate/L-aspartate transporter (GLAST-1). J Biol Chem. 1993;268:14594–6.

    PubMed  CAS  Google Scholar 

  32. Otis TS, Kavanaugh MP. Isolation of current components and partial reaction cycles in the glial glutamate transporter EAAT2. J Neurosci. 2000;20:2749–57.

    PubMed  CAS  Google Scholar 

  33. Auger C, Attwell D. Fast removal of synaptic glutamate by postsynaptic transporters. Neuron. 2000;28:547–58.

    PubMed  CAS  Google Scholar 

  34. Sonders MS, Amara SG. Channels in transporters. Curr Opin Neurobiol. 1996;6:294–302.

    PubMed  CAS  Google Scholar 

  35. Hertz L, Zielke HR. Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci. 2004;27:735–43.

    PubMed  CAS  Google Scholar 

  36. Takahashi M, Sarantis M, Attwell D. Postsynaptic glutamate uptake in rat cerebellar Purkinje cells. J Physiol. 1996;497(Pt 2):523–30.

    PubMed  CAS  Google Scholar 

  37. Otis TS, Wu YC, Trussell LO. Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites. J Neurosci. 1996;16:1634–44.

    PubMed  CAS  Google Scholar 

  38. Brasnjo G, Otis TS. Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long-term depression. Neuron. 2001;31:607–16.

    PubMed  CAS  Google Scholar 

  39. Reichelt W, Knopfel T. Glutamate uptake controls expression of a slow postsynaptic current mediated by mGluRs in cerebellar Purkinje cells. J Neurophysiol. 2002;87:1974–80.

    PubMed  CAS  Google Scholar 

  40. Barbour B. An evaluation of synapse independence. J Neurosci. 2001;21:7969–84.

    PubMed  CAS  Google Scholar 

  41. Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci. 1990;11:379–87.

    PubMed  CAS  Google Scholar 

  42. Voutsinos-Porche B, Bonvento G, Tanaka K, Steiner P, Welker E, Chatton JY, et al. Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron. 2003;37:275–86.

    PubMed  CAS  Google Scholar 

  43. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996;16:675–86.

    PubMed  CAS  Google Scholar 

  44. Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, et al. Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci. 1998;10:976–88.

    PubMed  CAS  Google Scholar 

  45. Marcaggi P, Billups D, Attwell D. The role of glial glutamate transporters in maintaining the independent operation of juvenile mouse cerebellar parallel fibre synapses. J Physiol. 2003;552:89–107.

    PubMed  CAS  Google Scholar 

  46. Takayasu Y, Iino M, Kakegawa W, Maeno H, Watase K, Wada K, et al. Differential roles of glial and neuronal glutamate transporters in Purkinje cell synapses. J Neurosci. 2005;25:8788–93.

    PubMed  CAS  Google Scholar 

  47. Brockhaus J, Deitmer JW. Long-lasting modulation of synaptic input to Purkinje neurons by Bergmann glia stimulation in rat brain slices. J Physiol. 2002;545: 581–93.

    PubMed  CAS  Google Scholar 

  48. Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65:1–105.

    PubMed  CAS  Google Scholar 

  49. Bordey A, Sontheimer H. Modulation of glutamatergic transmission by bergmann glial cells in rat cerebellum in situ. J Neurophysiol. 2003;89:979–88.

    PubMed  CAS  Google Scholar 

  50. Huang H, Bordey A. Glial glutamate transporters limit spillover activation of presynaptic NMDA receptors and influence synaptic inhibition of Purkinje neurons. J Neurosci. 2004;24:5659–69.

    PubMed  CAS  Google Scholar 

  51. Burnashev N, Khodorova A, Jonas P, Helm PJ, Wisden W, Monyer H, et al. Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science. 1992; 256:1566–70.

    PubMed  CAS  Google Scholar 

  52. Hollmann M, Hartley M, Heinemann S. Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science. 1991;252:851–3.

    PubMed  CAS  Google Scholar 

  53. Burnashev N, Monyer H, Seeburg PH, Sakmann B. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron. 1992;8:189–98.

    PubMed  CAS  Google Scholar 

  54. Koh DS, Burnashev N, Jonas P. Block of native Ca(2+)permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J Physiol. 1995; 486(Pt 2):305–12.

    PubMed  CAS  Google Scholar 

  55. Matsui K, Jahr CE. Ectopic release of synaptic vesicles. Neuron. 2003;40:1173–83.

    PubMed  CAS  Google Scholar 

  56. Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S, et al. Glia-synapse interaction through Ca2+permeable AMPA receptors in Bergmann glia. Science. 2001;292:926–9.

    PubMed  CAS  Google Scholar 

  57. Strata P, Rossi F. Plasticity of the olivocerebellar pathway. Trends Neurosci. 1998;21:407–13.

    PubMed  CAS  Google Scholar 

  58. Millan A, Arias-Montano JA, Mendez JA, Hernandez-Kelly LC, Ortega A. Alpha-amino-3-hydroxy-5-methyl-4isoxazolepropionic acid receptors signaling complexes in Bergmann glia. J Neurosci Res. 2004;78:56–63.

    PubMed  CAS  Google Scholar 

  59. Mendez JA, Lopez-Bayghen E, Rojas F, Hernandez ME, Ortega A. Glutamate regulates Oct-2 DNA-binding activity through alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors in cultured chick Bergmann glia cells. J Neurochem. 2004;88:835–43.

    Article  PubMed  CAS  Google Scholar 

  60. Lopez-Bayghen E, Espinoza-Rojo M, Ortega A. Glutamate down-regulates GLAST expression through AMPA receptors in Bergmann glial cells. Brain Res Mol Brain Res. 2003;115:1–9.

    PubMed  CAS  Google Scholar 

  61. Aguirre A, Lopez-Bayghen E, Ortega A. Glutamate-dependent transcriptional regulation of the chkbp gene: signaling mechanisms. J Neurosci Res. 2002;70:117–27.

    PubMed  CAS  Google Scholar 

  62. Millan A, Aguilar P, Mendez JA, Arias-Montano JA, Ortega A. Glutamate activates PP125(FAK) through AMPA/kainate receptors in Bergmann glia. J Neurosci Res. 2001;66:723–9.

    PubMed  CAS  Google Scholar 

  63. Lopez-Bayghen E, Ortega A. Glutamate-dependent transcriptional regulation of GLAST: role of PKC. J Neurochem. 2004;91:200–9.

    PubMed  CAS  Google Scholar 

  64. Matsui K, Jahr CE, Rubio ME. High-concentration rapid transients of glutamate mediate neural-glial communication via ectopic release. J Neurosci. 2005;25:7538–47.

    PubMed  CAS  Google Scholar 

  65. Matsui K, Jahr CE. Differential control of synaptic and ectopic vesicular release of glutamate. J Neurosci. 2004;24: 8932–9.

    PubMed  CAS  Google Scholar 

  66. Sugihara I, Wu H, Shinoda Y. Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol. 1999;414:131–48.

    PubMed  CAS  Google Scholar 

  67. Hamori J, Szentagothai J. Lack of evidence of synaptic contacts by climbing fibre collaterals to basket and stellate cells in developing rat cerebellar cortex. Brain Res. 1980;186:454–7.

    PubMed  CAS  Google Scholar 

  68. Lin SC, Huck JH, Roberts JD, Macklin WB, Somogyi P, Bergles DE. Climbing fiber innervation of NG2-expressing glia in the mammalian cerebellum. Neuron. 2005;46: 773–85.

    PubMed  CAS  Google Scholar 

  69. Bergles DE, Roberts JD, Somogyi P, Jahr CE. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature. 2000;405:187–91.

    PubMed  CAS  Google Scholar 

  70. Jabs R, Pivneva T, Huttmann K, Wyczynski A, Nolte C, Kettenmann H, et al. Synaptic transmission onto hippocampal glial cells with hGFAP promoter activity. J Cell Sci. 2005;118:3791–803.

    PubMed  CAS  Google Scholar 

  71. Bellamy TC, Ogden D. Long-term depression of neuron to glial signalling in rat cerebellar cortex. Eur J Neurosci. 2006;23:581–6.

    PubMed  Google Scholar 

  72. Dittman JS, Kreitzer AC, Regehr WG. Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J Neurosci. 2000;20:1374–85.

    PubMed  CAS  Google Scholar 

  73. Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002;64:355–405.

    PubMed  CAS  Google Scholar 

  74. Harrison J, Jahr CE. Receptor occupancy limits synaptic depression at climbing fiber synapses. J Neurosci. 2003;23: 377–83.

    PubMed  CAS  Google Scholar 

  75. Clements JD. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci. 1996;19:163–71.

    PubMed  CAS  Google Scholar 

  76. Coesmans M, Weber JT, De Zeeuw CI, Hansel C. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron. 2004;44:691–700.

    PubMed  CAS  Google Scholar 

  77. Foster KA, Crowley JJ, Regehr WG. The influence of multivesicular release and postsynaptic receptor saturation on transmission at granule cell to Purkinje cell synapses. J Neurosci. 2005;25:11655–65.

    PubMed  CAS  Google Scholar 

  78. Takahashi M, Kovalchuk Y, Attwell D. Preand postsynaptic determinants of EPSC waveform at cerebellar climbing fiber and parallel fiber to Purkinje cell synapses. J Neurosci. 1995;15:5693–702.

    PubMed  CAS  Google Scholar 

  79. Neale SA, Garthwaite J, Batchelor AM. Metabotropic glutamate receptor subtypes modulating neurotransmission at parallel fibre-Purkinje cell synapses in rat cerebellum. Neuropharmacology. 2001;41:42–9.

    PubMed  CAS  Google Scholar 

  80. Maejima T, Hashimoto K, Yoshida T, Aiba A, Kano M. Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron. 2001;31:463–75.

    PubMed  CAS  Google Scholar 

  81. Kirischuk S, Tuschick S, Verkhratsky A, Kettenmann H. Calcium signalling in mouse Bergmann glial cells mediated by alpha 1-adrenoreceptors and H1 histamine receptors. Eur J Neurosci. 1996;8:1198–208.

    PubMed  CAS  Google Scholar 

  82. Kirischuk S, Kirchhoff F, Matyash V, Kettenmann H, Verkhratsky A. Glutamate-triggered calcium signalling in mouse bergmann glial cells in situ: role of inositol-1,4,5trisphosphate-mediated intracellular calcium release. Neuroscience. 1999;92:1051–9.

    PubMed  CAS  Google Scholar 

  83. Tuschick S, Kirischuk S, Kirchhoff F, Liefeldt L, Paul M, Verkhratsky A, et al. Bergmann glial cells in situ express endothelinB receptors linked to cytoplasmic calcium signals. Cell Calcium. 1997;21:409–19.

    PubMed  CAS  Google Scholar 

  84. Southam E, Morris R, Garthwaite J. Sources and targets of nitric oxide in rat cerebellum. Neurosci Lett. 1992;137: 241–4.

    PubMed  CAS  Google Scholar 

  85. Kirischuk S, Moller T, Voitenko N, Kettenmann H, Verkhratsky A. ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J Neurosci. 1995;15:7861–71.

    PubMed  CAS  Google Scholar 

  86. Matyash V, Filippov V, Mohrhagen K, Kettenmann H. Nitric oxide signals parallel fiber activity to Bergmann glial cells in the mouse cerebellar slice. Mol Cell Neurosci. 2001;18:664–70.

    PubMed  CAS  Google Scholar 

  87. Kulik A, Haentzsch A, Luckermann M, Reichelt W, Ballanyi K. Neuron-glia signaling via alpha(1) adrenoceptor-mediated Ca(2+) release in Bergmann glial cells in situ. J Neurosci. 1999;19:8401–8.

    PubMed  CAS  Google Scholar 

  88. Pakhotin P, Verkhratsky A. Electrical synapses between Bergmann glial cells and Purkinje neurones in rat cerebellar slices. Mol Cell Neurosci. 2005;28:79–84.

    PubMed  Google Scholar 

  89. Hounsgaard J, Nicholson C. Potassium accumulation around individual purkinje cells in cerebellar slices from the guinea-pig. J Physiol. 1983;340:359–88.

    PubMed  CAS  Google Scholar 

  90. Haydon PG. GLIA: listening and talking to the synapse. Nat Rev Neurosci. 2001;2:185–93.

    PubMed  CAS  Google Scholar 

  91. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, et al. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci. 2004;7:613–20.

    PubMed  CAS  Google Scholar 

  92. Parpura V, Haydon PG. Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA. 2000;97:8629–34.

    PubMed  CAS  Google Scholar 

  93. Kreft M, Stenovec M, Rupnik M, Grilc S, Krzan M, Potokar M, et al. Properties of Ca(2+)-dependent exocytosis in cultured astrocytes. Glia. 2004;46:437–45.

    PubMed  Google Scholar 

  94. Parri HR, Gould TM, Crunelli V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci. 2001;4:803–12.

    PubMed  CAS  Google Scholar 

  95. Glitsch M, Marty A. Presynaptic effects of NMDA in cerebellar Purkinje cells and interneurons. J Neurosci. 1999;19:511–9.

    PubMed  CAS  Google Scholar 

  96. Casado M, Dieudonne S, Ascher P. Presynaptic N-methylD-aspartate receptors at the parallel fiber-Purkinje cell synapse. Proc Natl Acad Sci USA. 2000;97:11593–7.

    PubMed  CAS  Google Scholar 

  97. Casado M, Isope P, Ascher P. Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression. Neuron. 2002;33:123–30.

    PubMed  CAS  Google Scholar 

  98. Newman EA. Glial cell inhibition of neurons by release of ATP. J Neurosci. 2003;23:1659–66.

    PubMed  CAS  Google Scholar 

  99. Brockhaus J, Dressel D, Herold S, Deitmer JW. Purinergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices. Eur J Neurosci. 2004;19:2221–30.

    PubMed  Google Scholar 

  100. Casel D, Brockhaus J, Deitmer JW. Enhancement of spontaneous synaptic activity in rat Purkinje neurones by ATP during development. J Physiol. 2005;568:111–22.

    PubMed  CAS  Google Scholar 

  101. Lopez E, Lee-Rivera I, Lopez-Colome AM. Characteristics and regulation of glycine transport in Bergmann glia. Neurochem Res. 2005;30:1567–77.

    PubMed  CAS  Google Scholar 

  102. Miller RF. D-Serine as a glial modulator of nerve cells. Glia. 2004;47:275–83.

    PubMed  Google Scholar 

  103. Kim PM, Aizawa H, Kim PS, Huang AS, Wickramasinghe SR, Kashani AH, et al. Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci USA. 2005;102:2105–10.

    PubMed  CAS  Google Scholar 

  104. Barakat L, Wang D, Bordey A. Carrier-mediated uptake and release of taurine from Bergmann glia in rat cerebellar slices. J Physiol. 2002;541:753–67.

    PubMed  CAS  Google Scholar 

  105. Lafarga M, Berciano MT, Suarez I, Viadero CF, Andres MA, Berciano J. Cytology and organization of reactive astroglia in human cerebellar cortex with severe loss of granule cells: a study on the ataxic form of Creutzfeldt-Jakob disease. Neuroscience. 1991;40:337–52.

    PubMed  CAS  Google Scholar 

  106. Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia. 2005;50:427–34.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellamy, T.C. Interactions between Purkinje neurones and Bergmann glia. Cerebellum 5, 116–126 (2006). https://doi.org/10.1080/14734220600724569

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220600724569

Key words

Navigation