Skip to main content

Advertisement

Log in

Herpesvirus quiescence in neuronal cells. V: Forskolin-responsiveness of the herpes simplex virus type 1 α0 promoter and contribution of the putative cAMP response element

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

The herpes simplex virus (HSV)-1 α0 promoter contains a putative cAMP response element (CRE) located at positions −68 to −60 with respect to the initiation of transcription. In this report, the authors examined the functionality of this element using (1) luciferase reporter gene assays in nerve growth factor-differentiated (ND)-PC12 cells and (2) virus-induced activation from quiescently infected (QIF)-PC12 cells. The putative α0 CRE was completely eliminated by digestion with the restriction enzyme Tsp45I followed by mung bean nuclease treatment. The mutated region was verified by DNA sequencing and was inserted into the α0-luciferase reporter plasmid (pRDα0-LUC) creating (pRDα0ΔCRE-LUC), and into the HSV-1 genome of strain 17+(α0ΔCRE). Insertion into both copies of the α0 promoter was verified by Southern blot analysis. ND-PC12 cells transfected with pRDα0-LUC and pRDα0ΔCRE-LUC plasmids responded similarly to forskolin (50 μM), with approximately 250% increases in luciferase activity compared to mock-treated cultures as measured 3 days following treatment. When QIF-PC12 cultures established with HSV-1 strain 17+ and α0ΔCRE were treated with forskolin (50 μM) 17 days post infection, virus was detected in 9/24 (37.5%) and 13/24 (54.2%) of induced cultures by day 8 post treatment, respectively. In contrast, virus was detected in 0/23 and 1/24 (4.2%) of mock-treated cultures by day 8 post treatment for wild-type and mutant viruses, respectively. These findings indicate that the α0 promoter is forskolin responsive, the purported CRE of the α0 promoter does not confer forskolin responsiveness in ND-PC12 cells, and this element is not required for reactivation of HSV-1 from QIF-PC12 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bloom DC, Devi-Rao GB, Hill JM, Stevens JG, Wagner EK (1994). Molecular analysis of herpes simplex virus type 1 during epinephrine-induced reactivation of latently infected rabbits in vivo. J Virol 68: 1283–1292.

    PubMed  CAS  Google Scholar 

  • Bloom DC, Stevens JG, Hill JM, Tran RK (1997). Mutagenesis of a cAMP response element within the latency-associated transcript promoter of HSV-1 reduces adrenergic reactivation. Virology 236: 202–207.

    Article  PubMed  CAS  Google Scholar 

  • Cai W, Astor TL, Kiptak LM, Cho C, Coen DM, Schaffer PA (1993). The herpes simplex virus type 1 regulatory protein ICP0 enhances virus replication during acute infection and reactivation from latency. J Virol 67: 7501–7512.

    PubMed  CAS  Google Scholar 

  • Cai W, Schaffer P (1992). Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early, and late genes in productively infected cells. J Virol 66: 2904–2915.

    PubMed  CAS  Google Scholar 

  • Chen J, Silverstein S (1992). Herpes simplex viruses with mutations in the gene encoding ICP0 are defective in gene expression. J Virol 66: 2916–2927.

    PubMed  CAS  Google Scholar 

  • Clements GB, Stow ND (1989). A herpes simplex virus type 1 mutant containing a deletion with immediate early gene 1 is latency-competent in mice. J Gen Virol 70: 2501–2506.

    Article  PubMed  CAS  Google Scholar 

  • Danaher RJ, Jacob RJ, Chorak MD, Freeman CS, Miller CS (1999a). Heat stress induce reactivation of herpes simplex virus type 1 from quiescently infected neurally differentiated PC12 cells. J NeuroVirol 5: 374–383.

    Article  PubMed  CAS  Google Scholar 

  • Danaher RJ, Jacob RJ, Miller CS (1999b). Establishment of a quiescent herpes simplex virus type 1 infection in neurally differentiated PC12 cells. J NeuroVirol 5: 258–267.

    Article  PubMed  CAS  Google Scholar 

  • Danaher RJ, Savells-Arb A, Black SA Jr, Jacob RJ, Miller CS (2001). Herpesvirus quiescence in neuronal cells. IV: virus activation induced by pituitary adenylate cyclase-activating polypeptide (PACAP) involves the protein kinase A pathway. J NeuroVirol 7: 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Davido DJ, Leib DA (1996). Role of cis-acting sequences of the ICP0 promoter of herpes simplex virus type 1 in viral pathogenesis, latency and reactivation. J Gen Virol 77: 1853–1863.

    Article  PubMed  CAS  Google Scholar 

  • Davido DJ, Leib DA (1998). Analysis of the basal and inducible activities of the ICPO promoter of herpes simplex virus type 1. J Gen Virol 79: 2093–2098.

    PubMed  CAS  Google Scholar 

  • Devireddy LR, Jones CJ (2000). Olf-1, a neuron-specific transcription factor, can activate the herpes simplex virus type 1-infected cell protein 0 promoter. J Biol Chem 275: 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Everett R (1989). Construction and characterization of herpes simplex virus type 1 mutants with defined lesions in immediate early gene 1. J Gen Virol 70: 1185–1202.

    Article  PubMed  CAS  Google Scholar 

  • Everett RD, Orr A, Preston CM (1998). A viral activator of gene expression functions via the ubiquitin-proteasome pathway. EMBO J 17: 7161–7169.

    Article  PubMed  CAS  Google Scholar 

  • Fraser NW, Valyi-Nagy T (1993). Viral, neuronal and immune factors which may influence herpes simiplex virus (HSV) latency and reactivation. Microb Pathogen 15: 83–91.

    Article  CAS  Google Scholar 

  • Gelman IH, Silverstein S (1985). Identification of immediate early genes from herpes simplex virus that transactivate the virus thymidine kinase gene. Proc Natl Acad Sci U S A 82: 5265–5269.

    Article  PubMed  CAS  Google Scholar 

  • Gordon YJ, McKnight JL, Ostrove JM, Romanowski E, Araullo-Cruz T (1990). Host species and strain differences affect the ability of an HSV-1 ICP0 deletion mutant to establish latency and spontaneously reactivate in vivo. Virology 178: 469–477.

    Article  PubMed  CAS  Google Scholar 

  • Halford WP, Gebhardt BM, Carr DJ (1996). Mechanisms of herpes simplex virus type 1 reactivation. J Virol 70: 5051–5056.

    PubMed  CAS  Google Scholar 

  • Halford WP, Kemp CD, Isler JA, Davido DJ, Schaffer PA (2001). ICP0, ICP4, or VP16 expressed from adenovirus vectors induces reactivation of latent herpes simplex virus type 1 in primary cultures of latently infected trigeminal ganglion cells. J Virol 75: 6143–6153.

    Article  PubMed  CAS  Google Scholar 

  • Halford WP, Schaffer P (2001). ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency. J Virol 75: 3240–3249.

    Article  PubMed  CAS  Google Scholar 

  • Honess RW, Roizman B (1974). Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 14: 8–19.

    PubMed  CAS  Google Scholar 

  • Honess RW, Roizman B (1975). Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides. Proc Natl Acad Sci U S A 72: 1276–1280.

    Article  PubMed  CAS  Google Scholar 

  • Huang RD, Smith MF, Zahler WL (1982). Inhibition of forskolin-activated adenylate cyclase by ethanol and other solvents. J Cyclic Nucleotide Res 8: 385–394.

    PubMed  CAS  Google Scholar 

  • Kemp LM, Gelman IH, Silverstein SJ, Latchman DS (1990). Regulation of herpes simplex virus immediate-early gene promoters in mouse neuroblastoma cells. Neurosci Lett 118: 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Kristie T, Roizman B (1988). Differentiation and DNA contact points of host proteins binding at the cis site for virion-mediated induction of alpha genes of herpes simplex virus 1. J Virol 62: 1145–1157.

    PubMed  CAS  Google Scholar 

  • Leib DA, Coen DM, Bogard CL, Hicks KA, Yager DR, Knipe DM, Tyler KL, Schaffer PA (1989). Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J Virol 63: 759–768.

    PubMed  CAS  Google Scholar 

  • Leib DA, Nadeau KC, Rundle SA, Schaffer PA (1991). The promoter of the latency-associated transcripts of herpes simplex virus type 1 contains a functional cAMP-response element: role of the latency-associated transcripts and cAMP in reactivation of viral latency. Proc Natl Acad Sci U S A 88: 48–52.

    Article  PubMed  CAS  Google Scholar 

  • Lin Y-S, Green MR (1988). Interaction of a common cellular transcription factor with regulatory elements in both Ela and cyclic AMP inducible promoters. Proc Natl Acad Sci U S A 85: 3396–3400.

    Article  PubMed  CAS  Google Scholar 

  • Lu R, Misra V (2000). Potential role for luman, the cellular homologue of herpes simplex virus VP16 (A gene transinducing factor), in herpesvirus latency. J Virol 74: 934–943.

    Article  PubMed  CAS  Google Scholar 

  • Mador N, Panet A, Latchman D, Steiner I (1995). Expression and splicing of the latency-associated transcripts of herpes simplex virus type 1 in neuronal and non-neuronal cell lines. J Biochem (Tokyo) 117: 1288–1297.

    CAS  Google Scholar 

  • Marquart ME, Zheng X, Tran RK, Thompson HW, Bloom DC, Hill JM (2001). A cAMP response element within the latency-associated transcript promoter of HSV-1 facilitates induced ocular reactivation in a mouse hyperthermia model. Virology 284: 62–69.

    Article  PubMed  CAS  Google Scholar 

  • Mavromara-Nazos P, Silver S, Hubenthal-Voss J, McKnight JL, Roizman B (1986). Regulation of herpes simplex virus 1 genes: alpha gene sequence requirements for transient induction of indicator genes regulated by beta or late (gamma 2) promoters. Virology 149: 152–164.

    Article  PubMed  CAS  Google Scholar 

  • Mayr B, Montminy M (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2: 599–609.

    Article  PubMed  CAS  Google Scholar 

  • Miller CS, Danaher RJ, Jacob RJ (1998). Molecular aspects of herpes simplex virus I latency, reactivation and recurrence. Crit Rev Oral Biol Med 9: 541–562.

    Article  PubMed  CAS  Google Scholar 

  • Miller CS, Smith KO (1991). Enhanced replication of herpes simplex virus type 1 in human cells. J Dent Res 70: 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Minagawa H, Tanaka S, Toh Y, Mori R (1994). Detection of herpes simplex virus type1-encoded RNA by polymerase chain reaction: different pattern of viral RNA detection in latently infected murine trigeminal ganglia following in vitro or in vivo reactivation. J Gen Virol 75: 647–650.

    Article  PubMed  CAS  Google Scholar 

  • Mosca JD, Bednarik DP, Raj NB, Rosen CA, Sodroski JG, Haseltine WA, Hayward GS, PithaPM (1987). Activation of human immunodeficiency virus by herpesvirus infection: identification of a region within the long terminal repeat that responds to a trans-acting factor encoded by herpes simplex virus 1. Proc Natl Acad Sci U S A 84: 7408–7412.

    Article  PubMed  CAS  Google Scholar 

  • Nabel GJ, Rice SA, Knipe DM, Baltimore D (1988). Alternative mechanisms for activation of human immunodeficiency virus enhancer in T cells. Science 239: 1299–1302.

    Article  PubMed  CAS  Google Scholar 

  • Ralph WM Jr, Cabatingan MS, Schaffer PA (1994). Induction of herpes simplex virus type 1 immediate-early gene expression by a cellular activity expressed in Vero and NB41A3 cells after growth arrest-release. J Virol 68: 6871–6882.

    PubMed  CAS  Google Scholar 

  • Roesler WJ, Vandenbark GR, Hanson RW (1988). Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem 263: 9063–9066.

    PubMed  CAS  Google Scholar 

  • Russell J, Stow ND, Stow EC, Preston CM (1987). Herpes simplex virus genes involved in latency in vitro. J Gen Virol 68: 3009–3018.

    Article  PubMed  Google Scholar 

  • Samaniego LA, Neiderhiser AL, DeLuca NA (1998). Persistence and expression of the herpes simplex virus genome in the absence of immediate early proteins. J Virol 72: 3307–3320.

    PubMed  CAS  Google Scholar 

  • Shaywitz AJ, Greenberg ME (1999). CREB: a stimulusinduced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68: 821–861.

    Article  PubMed  CAS  Google Scholar 

  • Smith RL, Pizer LI, Johnson EM Jr, Wilcox CL (1992). Activation of second-messenger pathways reactivates latent herpes simplex virus in neuronal cultures. Virology 188: 311–318.

    Article  PubMed  CAS  Google Scholar 

  • Smith TA, Cheung A (1998). Herpes simplex virus type 1 ICP-0 induces reactivation of pseudorabies virus from latently infected trigeminal ganglia explant cultures. Arch Virol 143: 591–599.

    Article  PubMed  CAS  Google Scholar 

  • Stevens J (1989). Human herpesviruses: a consideration of the latent state. Microbiol Rev 53: 318–332.

    PubMed  CAS  Google Scholar 

  • Stevens JG, Haarr L, Porter DD, Cook ML, Wagner EK (1988). Prominence of the herpes simplex virus latency-associated transcript in trigeminal ganglia from seropositive humans. J Infect Dis 158: 117–123.

    PubMed  CAS  Google Scholar 

  • Tal-Singer R, Lasner TM, Podrzucki W, Skokotas A, Leary JJ, Berger SL, Fraser NW (1997). Gene expression during reactivation of herpes simplex virus type 1 from latency in the peripheral nervous system is different from that during lytic infection of tissue cultures. J Virol 71: 5268–5276.

    PubMed  CAS  Google Scholar 

  • Tsavachidou D, Podrzucki W, Seykora J, Berger SL (2001). Gene array analysis reveals changes in peripheral nervous system gene expression following stimuli that result in reactivation of latent herpes simplex virus type 1: induction of transcription factor Bcl-3. J Virol 75: 9909–9917.

    Article  PubMed  CAS  Google Scholar 

  • Wheatley SC, Dent CL, Wood JN, Latchman DS (1992). Elevation of cyclic AMP levels in cell lines derived from latently infectable sensory neurons increases their permissivity for herpes virus infection by activating the viral immediate-early 1 gene promoter. Mol Cell Brain Res 12: 149–154.

    Article  CAS  Google Scholar 

  • Zhu XX, Chen JX, Young CS, Silverstein S (1990). Reactivation of latent herpes simplex virus by adenovirus recombinants encoding mutant EI-0 gene products. J Virol 64: 4489–4498.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Miller.

Additional information

This research was supported by National Institute of Dental and Craniofacial Research, National Institutes of Health, grant DE14142 to CSM and the University of Kentucky Research Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danaher, R.J., Jacob, R.J. & Miller, C.S. Herpesvirus quiescence in neuronal cells. V: Forskolin-responsiveness of the herpes simplex virus type 1 α0 promoter and contribution of the putative cAMP response element. Journal of NeuroVirology 9, 489–497 (2003). https://doi.org/10.1080/13550280390218797

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280390218797

Keywords

Navigation