Skip to main content

Advertisement

Log in

Human T-cell lymphotropic virus type I and neurological diseases

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Human T-cell lymphotropic virus type I (HTLV-I) infection is associated with a variety of human diseases. In particular, there are two major diseases caused by HTLV-I infection. One is an aggressive neoplastic disease called adult T-cell leukemia (ATL), and another is a chronic progressive inflammatory neurological disease called HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It is still unknown why one virus causes these different diseases. With regard to HAM/TSP, virus-host immunological interactions are an considered to be important cause of this disease. Coexisting high HTLV-I proviral load and HTLV-I-specific T cells (CD4+ T cells and CD8+ T cells) is an important feature of HAM/TSP. Histopathological studies indicate the existence of an inflammatory reaction and HTLV-I-infected cells in the affected lesions of HAM/TSP. Therefore, the immune response to HTLV-I probably contributes to the inflammatory process of the central nervous system lesions in HAM/TSP patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe M, Umehara F, Kubota R, Moritoyo T, Izumo S, Osame M (1999). Activation of macrophage/microglias with expression of MRP8 and MRP14 is associated with the lesional activities in the spinal cord lesions in HTLV-I associated myelopathy. J Neurol 246: 358–364.

    Article  PubMed  CAS  Google Scholar 

  • Aye MM, Matsuoka E, Moritoyo T, et al (2000). Histopathological analysis of four autopsy cases of HTLV-I-associated myelopathy/tropical spastic paraparesis: inflammatory changes occur simultaneously in the entire central nervous system. Acta Neuropathol 100: 245–252.

    Article  PubMed  CAS  Google Scholar 

  • Azimi N, Nagai M, Jacobson S, Waldmann TA (2001). IL-15 plays a major role in the persistence of Tax-specific CD8 cells in HAM/TSP patients. Proc Natl Acad Sci USA 98: 14559–14564.

    Article  PubMed  CAS  Google Scholar 

  • Biddison WE, Kubota R, Kawanishi T, et al (1997). Human T cell leukemia virus type I (HTLV-I)—specific CD8+ CTL clones from patients with HTLV-I—associated neurologic disease secrete proinflammatory cytokines, chemokines, and matrix metalloproteinase. J Immunol 159: 2018–2025.

    PubMed  CAS  Google Scholar 

  • Bieganowska K, Hollsberg P, Buckle GJ, et al (1999). Direct analysis of viral-specific CD8+ T cells with soluble HLA-A2/Tax11-19 tetramer complexes in patients with human T cell lymphotropic virus-associated myelopathy. J Immunol 162: 1765–1771.

    PubMed  CAS  Google Scholar 

  • Cavrois M, Gessain A, Gout O, Wain-Hobson S, Wattel E (2000). Common human T cell leukemia virus type 1 (HTLV-1) integration sites in cerebrospinal fluid and blood lymphocytes of patients with HTLV-1—associated myelopathy/tropical spastic paraparesis indicate that HTLV-1 crosses the blood-brain barrier via clonal HTLV-1-infected cells. J Infect Dis 82: 1044–1050.

    Article  Google Scholar 

  • Furukawa Y, Yamashita M, Usuku K, Izumo S, Nakagawa M, Osame M (2000). Phylogenetic subgroups of HTLV-I in tax gene and their association with different risk to HTLV-I—associated myelopathy/tropical spastic parapraresis. J Infect Dis 182: 1343–1349.

    Article  PubMed  CAS  Google Scholar 

  • Furuya T, Nakamura T, Shirabe S, et al (1997). Heightened transmigrating activity of CD4-positive T cells through reconstituted basement membrane in patients with human T-lymphotropic virus type I-associated myelopathy. Proc Assoc Am Physicians 109: 228–236.

    PubMed  CAS  Google Scholar 

  • Gessain A, Barin F, Vernant JC, et al (1985). Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet 2: 407–410.

    Article  PubMed  CAS  Google Scholar 

  • Goon PK, Hanon E, Igakura T, et al (2002). High frequencies of Th1-type CD4+ T cells specific to HTLV-1 Env and Tax proteins in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. Blood 99: 3335–3341.

    Article  PubMed  CAS  Google Scholar 

  • Grant C, Barmak K, Alefantis T, et al (2002). Human T cell leukemia virus type I and neurologic disease: events in bone marrow, peripheral blood, and central nervous system during normal immune surveillance and neuroinflammation. J Cell Physiol 190: 133–159.

    Article  PubMed  CAS  Google Scholar 

  • Greten TF, Slansky JE, Kubota R, et al (1998). Direct visualization of antigen-specific T cells: HTLV-1 Tax11-19-specific CD8+ T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proc Natl Acad Sci USA 95: 7568–7573.

    Article  PubMed  CAS  Google Scholar 

  • Hanon E, Goon P, Taylor GP, et al (2001). High production of interferon gamma but not interleukin-2 by human T-lymphotropic virus type I-infected peripheral blood. Blood 98: 721–726.

    Article  PubMed  CAS  Google Scholar 

  • Hanon E, Stinchcombe JC, Saito M, et al (2000). Fratricide among CD8+ T lymphocytes naturally infected with human T cell lymphotropic virus type I. Immunity 13: 657–664.

    Article  PubMed  CAS  Google Scholar 

  • Hara H, Morita M, Iwaki T, et al (1994). Detection of human T lymphotrophic virus type I (HTLV-I) proviral DNA and analysis of T cell receptor V beta CDR3 sequences in spinal cord lesions of HTLV-I-associated myelopathy/tropical spastic paraparesis. J Exp Med 180: 831–839.

    Article  PubMed  CAS  Google Scholar 

  • Hausmann S, Biddison WE, Smith KJ, et al (1999). Peptide recognition by two HLA-A2/Tax11-19-specific T cell clones in relationship to their MHC/peptide/TCR crystal structures. J Immunol 162: 5389–5397.

    PubMed  CAS  Google Scholar 

  • Izumo S, Ijichi T, Higuchi I, Tashiro A, Takahashi K, Osame M (1992). Neuropathology of HTLV-I-associated myelopathy: a report of two autopsy cases. Acta Paediatr Jpn 34: 358–364.

    PubMed  CAS  Google Scholar 

  • Jacobson S, Shida H, McFarlin DE, Fauci AS, Koenig S (1990). Circulating CD8+ cytotoxic lymphocytes specific for HTLV-I in patients with HTLV-I associated neurological disease. Nature 348: 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Jeffery KJ, Siddiqui AA, Bunce M, et al (2000). The influence of HLA class I alleles and heterozygosity on the outcome of human T cell lymphotropic virus type I infection. J Immunol 165: 7278–7284.

    PubMed  CAS  Google Scholar 

  • Jeffery KJM, Usuku K, Hall SE, et al (1999). HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy. Proc Natl Acad Sci USA 96: 3848–3853.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan J, Osame M, Kubota H (1990). The risk of developing HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP) among persons infected with HTLV-I. J AIDS 3: 1096–1101.

    CAS  Google Scholar 

  • Kira J, Fujihara K, Itoyama Y, Goto I, Hasuo K (1991). Leukoencephalopathy in HTLV-I-associated myelopathy/tropical spastic paraparesis: MRI analysis and a two year follow-up study after corticosteroid therapy. J Neurol Sci 106: 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Koenig S, Woods RM, Brewah YA, et al (1993). Characterization of MHC class I restricted cytotoxic T cell responses to tax in HTLV-1 infected patients with neurologic disease. J Immunol 151: 3874–3883.

    PubMed  CAS  Google Scholar 

  • Kubota R, Kawanishi T, Matsubara H, Manns A, Jacobson S (1998). Demonstration of human T lymphotropic virus type I (HTLV-I) tax-specific CD8+ lymphocytes directly in peripheral blood of HTLV-I—associated myelopathy/tropical spastic paraparesis patients by intracellular cytokine detection. J Immunol 161: 482–488.

    PubMed  CAS  Google Scholar 

  • Kubota R, Osame M, Jacobson S (2000). Retrovirus: human T-cell lymphotropic virus type I-associated diseases and immune dysfunction. In: Effects of microbes on the immune system. Cunningham MW, Fujinami RS (eds). Philadelphia: Lippincott Williams & Wilkins, pp 349–371.

    Google Scholar 

  • Kubota R, Umehara F, Izumo S, et al (1994). HTLV-I proviral DNA amount correlates with infiltrating CD4+ lymphocytes in the spinal cord from patients with HTLV-I-associated myelopathy. J Neuroimmunol 53: 23–29.

    Article  PubMed  CAS  Google Scholar 

  • Lehky TJ, Flerlage N, Katz D, et al (1996). Human T-cell lymphotropic virus type II-associated myelopathy: clinical and immunologic profiles. Ann Neurol 40: 714–723.

    Article  PubMed  CAS  Google Scholar 

  • Lehky TJ, Fox CH, Koenig S, et al (1995). Detection of human T-lymphotropic virus type I (HTLV-I) tax mRNA in the central nervous system of HTLV-I—associated myelopathy/tropical spastic paraparesis patients by in situ hybridization. Ann Neurol 37: 167–175.

    Article  PubMed  CAS  Google Scholar 

  • Levin MC, Krichavsky M, Berk J, et al (1998). Neuronal molecular mimicry in immune-mediated neurologic disease. Ann Neurol 44: 87–98.

    Article  PubMed  CAS  Google Scholar 

  • Levin MC, Lee SM, Kalume F, et al (2002). Autoimmunity due to molecular mimicry as a cause of neurological disease. Nat Med 8: 509–513.

    Article  PubMed  CAS  Google Scholar 

  • Makino M, Shimokubo S, Wakamatsu SI, Izumo S, Baba M (1999). The role of human T-lymphotropic virus type 1 (HTLV-1)-infected dendritic cells in the development of HTLV-1—associated myelopathy/tropical spastic paraparesis. J Virol 73: 4575–4581.

    PubMed  CAS  Google Scholar 

  • Matsuoka E, Takenouchi H, Hashimoto K, et al (1998). Perivascular T-cells are infected with HTLV-I in the spinal cord lesions with HAM/TSP: double staining of immunohistochemistry and PCR in situ hybridization. Acta Neuorpathol 96: 340–346.

    Article  CAS  Google Scholar 

  • Matsuoka E, Usuku K, Jonosono M, Takenouchi N, Izumo S, Osame M (2000). CD44 splice variant involvement in the chronic inflammatory disease of the spinal cord: HAM/TSP. J Neuroimmunol 102: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Mor F, Cohen IR (1992). T cells in the lesion of experimental autoimmune encephalomyelitis. Enrichment for reactivities to myelin basic protein and to heat shock proteins. J Clin Invest 90: 2447–2455.

    Article  PubMed  CAS  Google Scholar 

  • Moritoyo T, Reinhart TA, Moritoyo H, et al (1996). Human T-lymphotropic virus type I-associated myelopathy and tax gene expression in CD4C T lymphocytes. Ann Neurol 40: 84–90.

    Article  PubMed  CAS  Google Scholar 

  • Nagai M, Brennan MB, Sakai JA, Mora CA, Jacobson S (2001a). CD8C T cells are an in vivo reservoir for human T-cell lymphotropic virus type I. Blood 98: 1858–1861.

    Article  PubMed  CAS  Google Scholar 

  • Nagai M, Kubota R, Greten TF, Schneck JP, Leist TP, Jacobson S (2001b). Increased activated human T cell lymphotropic virus type I (HTLV-I) Tax11—19-specific memory and effector CD8+ cells in patients with HTLV-I-associated myelopathy/tropical spastic paraparesis: correlation with HTLV-I provirus load. J Infect Dis 183: 197–205.

    Article  PubMed  CAS  Google Scholar 

  • Nagai M, Usuku K, Matsumoto W, et al (1998). Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J NeuroVirol 4: 586–593.

    Article  PubMed  CAS  Google Scholar 

  • Nagai M, Yamano Y, Brennan MB, Mora CA, Jacobson S (2001c). Increased HTLV-I proviral load and preferential expansion of HTLV-I Tax-specific CD8+ T cells in cerebrospinal fluid from patients with HAM/TSP. Ann Neurol 50: 807–812.

    Article  PubMed  CAS  Google Scholar 

  • Nagai M, Yashiki S, Fujiyoshi T, et al (1996). Characterization of a unique T-cell clone established from a patient with HAM/TSP which recognized HTLV-I-infected T-cell antigens as well as spinal cord tissue antigens. J Neuroimmunol 65: 97–105.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Furuya T, Nishiura Y, Ichinose K, Shirabe S, Eguchi K (2000). Importance of immune deviation toward Th1 in the early immunopathogenesis of human T-lymphotropic virus type I-associated myelopathy. Med Hypotheses 54: 777–782.

    Article  PubMed  CAS  Google Scholar 

  • Osame M, Usuku K, Izumo S, et al (1986). HTLV-I associated myelopathy, a new clinical entity [letter]. Lancet 1: 1031–1032.

    Article  PubMed  CAS  Google Scholar 

  • Parker CE, Nightingale S, Taylor GP, Weber J, Bangham CR (1994). Circulating anti-Tax cytotoxic T lymphocytes from human T-cell leukemia virus type I-infected people, with and without tropical spastic paraparesis, recognize multiple epitopes simultaneously. J Virol 68: 2860–2868.

    PubMed  CAS  Google Scholar 

  • Richardson JH, Edwards AJ, Cruickshank JK, Rudge P, Dalgleish AG (1990). In vivo cellular tropism of human T-cell leukemia virus type 1. J Virol 64: 5682–5687.

    PubMed  CAS  Google Scholar 

  • Sakai JA, Nagai M, Brennan MB, Mora CA, Jacobson S (2001). In vitro spontaneous lymphoproliferation in patients with human T-cell lymphotropic virus type I-associated neurologic disease: predominant expansion of CD8+ T cells. Blood 98: 1506–1511.

    Article  PubMed  CAS  Google Scholar 

  • Silva EA, Otsuki K, Leite AC, et al (2002). HTLV-II infection associated with a chronic neurodegenerative disease: clinical and molecular analysis. J Med Virol 66: 253–257.

    Article  PubMed  CAS  Google Scholar 

  • Szymocha R, Akaoka H, Dutuit M, et al (2000). Human T-cell lymphotropic virus type 1-infected T lymphocytes impair catabolism and uptake of glutamate by astrocytes via Tax-1 and tumor necrosis factor alpha. J Virol 74: 6433–6441.

    Article  PubMed  CAS  Google Scholar 

  • Umehara F, Abe M, Koeeda Y, Izumo S, Osame M (2000). Axonal damage revealed by accumulation of β-amyloid precursor protein in HTLV-I—associated myelopathy. J Neurol Sci 176: 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Umehara F, Izumo S, Nakagawa M, et al (1993). Immunocytochemical analysis of the cellular infiltrate in the spinal cord lesions in HTLV-I—associated myelopathy. J Neuropathol Exp Neurol 52: 424–430.

    Article  PubMed  CAS  Google Scholar 

  • Umehara F, Izumo S, Ronquillo AT, Matsumuro K, Osame M (1994a). Cytokine expression in the spinal cord lesions in HTLV-I-associated myelopathy. J Neuropathol Exp Neurol 53: 72–77.

    Article  PubMed  CAS  Google Scholar 

  • Umehara F, Izumo S, Takeya M, Sato E, Osame M (1996). Expression of adhesion molecules and monocyte chemoattractant protein-1(MCP-1) in the spinal cord lesions in HTLV-I-associated myelopathy. Acta Neuropathol 91: 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Umehara F, Nakamura A, Izumo S, et al (1994b). Apoptosis of T-lymphocytes in the spinal cord lesions in HTLV-I-associated myelopathy: a possible mechanism to control viral infection in the central nervous system. J Neuropathol Exp Neurol 53: 617–624.

    Article  PubMed  CAS  Google Scholar 

  • Umehara F, Okada Y, Fujimoto N, Abe M, Izumo S, Osame M (1998). Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in HTLV-I-associated myelopathy. J Neuropathol Exp Neurol 57: 839–849.

    Article  PubMed  CAS  Google Scholar 

  • Usuku K, Sonoda S, Osame M, et al (1988). HLA haplotype-linked high immune responsiveness against HTLV-I in HTLV-I—associated myelopathy: comparison with adult T-cell leukemia/lymphoma. Ann Neurol 23: S143-S150.

    Article  PubMed  Google Scholar 

  • Vine AM, Witkover AD, Lloyd AL, et al (2002). Polygenic control of human T lymphotropic virus type I (HTLV-I) provirus load and the risk of HTLV-I-associated myelopathy/tropical spastic paraparesis. J Infect Dis 186: 932–939.

    Article  PubMed  CAS  Google Scholar 

  • Yamano Y, Nagai M, Brennan M, et al (2001). Correlation of human T-cell lymphotropic virus type 1 (HTLV-1) mRNA with proviral DNA load, virus-specific CD8+ T cells, and disease severity in HTLV-I-associated myelpathy (HAM/TSP). Blood 99: 88–94.

    Article  Google Scholar 

  • Yashiki S, Fujiyoshi T, Arima N, et al (2001). HLA-A*26, HLA-B*4002, HLA-B*4006, and HLA-B*4801 alleles predispose to adult T cell leukemia: the limited recognition of HTLV type I tax peptide anchor motifs and epitopes to generate anti-HTLV type 1 tax CD8(+) cytotoxic T lymphocytes. AIDS Res Hum Retroviruses 17: 1047–1061.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Osame.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagai, M., Osame, M. Human T-cell lymphotropic virus type I and neurological diseases. Journal of NeuroVirology 9, 228–235 (2003). https://doi.org/10.1080/13550280390194028

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280390194028

Keywords

Navigation