Skip to main content

Advertisement

Log in

Hypothalamic digoxin-mediated model for subacute sclerosing panencephalitis

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

The isoprenoid pathway including endogenous digoxin was assessed in sub-acute sclerosing panencephalitis (SSPE). This was also studied for comparison in patients with right hemispheric and left hemispheric dominance. The following parameters were measured in patients with SSPE and in individuals with right hemispheric, left hemispheric and bihemispheric dominance—(a) plasma HMG CoA reductase, digoxin, dolichol, ubiquinone, and magnesium levels; (b) tryptophan/tyrosine catabolic patterns; (c) free-radical metabolism; (d) glycoconjugate metabolism; and (e) membrane composition and RBC membrane Na+-K+ ATPase activity. The isoprenoid pathway was upregulated with increased digoxin synthesis in patients with SSPE and in those with right hemispheric dominance. In this group of patients: (a) the tryptophan catabolites were increased and the tyrosine catabolites reduced; (b) the dolichol and glycoconjugate levels were elevated; (c) lysosomal stability was reduced; (d) ubiquinone levels were low and free-radical levels increased; and (e) the membrane cholesterol:phospholipid ratios were increased and membrane glycoconjugates reduced. On the other hand, in patients with left hemispheric dominance the reverse patterns were obtained. The upregulated isoprenoid pathway and hypothalamic digoxin are involved in the pathogenesis of SSPE. SSPE occurs in right hemispheric chemically dominant individuals and a pathogenetic model for SSPE implicating hypothalamic digoxin is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arun P, Ravi Kumar A, Leelamma S, Kurup PA (1998a). Identification and estimation of endogenous digoxin in biological fluids and tissues by TLC and HPLC. Indian J Biochem Biophys 35: 308–312.

    CAS  PubMed  Google Scholar 

  • Arun P, Ravi Kumar A, Leelamma S, Kurup PA (1998b). Endogenous alkaloids in the brain of rats loaded with tyrosine/tryptophan in the serum of patients of neurodegenerative and psychiatric disorders. Ind J Med Bes 107: 231–238.

    CAS  Google Scholar 

  • Ashkenazi A, Dixit VM (1998). Death receptors signalling and modulation. Science 281: 1305–1308.

    Article  CAS  PubMed  Google Scholar 

  • Bardos P, Degenne D, Lebranchu Y, Biziere K, Renoux G (1981). Neocortical lateralization in NK activity in mice. Scand J Immunol 13: 609–611.

    Article  CAS  PubMed  Google Scholar 

  • Beutler E, Duran O, Kelley BM (1963). Modified procedure for the estimation reduced glutathione. J Lab Clin Med 61: 882–886.

    CAS  PubMed  Google Scholar 

  • Bloxam DL, Warren WH (1974). Error in the determination of tryptophan by the method of Denkala and Dewey. A revised procedure. Anal Biochem 60: 621–625.

    Article  CAS  PubMed  Google Scholar 

  • Brien PJO (1969). Estimation of conjugated dienes and hydroperoxide. Can J Biochem 47: 485–487.

    Article  Google Scholar 

  • Carpenter WT Jr, Buchanan RW (1994). Medical progress in schizophrenia. N Engl J Med 30(10): 681–690.

    Article  Google Scholar 

  • Curzon G, Green AR (1970). Rapid method for the determination of 5-hydroxy tryptamine and 5-hydroxy indoleacetic acid in certain regions of rat brain. Br J Pharmacol 39: 653–655.

    CAS  PubMed  Google Scholar 

  • Felton D, Cohen N, Ader R (1991). Psychoneuroimmunology. Academic Press: New York.

    Google Scholar 

  • Finkel TH (1991). T-cell development and transmembrane signalling. Changing biological responses through a unchanging receptor. Immunol Today 12: 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Gabor G, Allon N (1994). Spectrofluorometric method for NO determination. Anal Bioch 220: 16–23.

    Article  CAS  Google Scholar 

  • Geschwind N, Behan P (1982). Left handedness: Association with immune diseases migraine, and developmental learning disorders. Proc Natl Acad Sci USA 79: 5097–5100.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JL, Brown MS (1990). Regulation of the mevalonate pathway. Nature 343: 425–430.

    Article  CAS  PubMed  Google Scholar 

  • Gorman JR, Locke S (1989). Comprehensive textbook of psychiatry. Williams and Wilkins: Baltimore.

    Google Scholar 

  • Green DR, Reed JC (1998). Mitochondria and apoptosis. Science 281: 1309–1316.

    Article  CAS  PubMed  Google Scholar 

  • Greenamyre JT, Poter RHP (1994). Anatomy and physiology of glutamate in CNS. Neurology 44(8): S7-S13.

    CAS  PubMed  Google Scholar 

  • Haga H (1992). Effects of dietary magnesium supplementation on diurnal variation of BP and plasma Na+-K+ ATPase activity in essential hypertension. Jpn Heart J 33(6): 785–798.

    CAS  PubMed  Google Scholar 

  • Haupert GT (1989). Sodium pump regulation by endogenous inhibition. Top Membr Transport 34: 345–348.

    Google Scholar 

  • Hisaka A, Kasamatu S, Takenaga N (1990). Absorption of a novel prodrug of DOPA. Drug-Metab Disposal 18: 621–625.

    CAS  Google Scholar 

  • Horn HD, Burns FH (1978). Methods of enzymatic analysis. Academic Press: New York.

    Google Scholar 

  • Jacob RA (1994). Nutrition, health and antioxidants. INFOBM 5(11): 1271–1275.

    Google Scholar 

  • Jaya P, Kurup PA (1986). Effect of magnesium deficiency on the metabolism of glycosaminoglycans in rats. J Biosci 10: 487–497.

    Article  CAS  Google Scholar 

  • Kakkar P, Das B, Viswanathan PN (1984). A modified spectrophotometric assay of SOD. Indian J Biochem Biophys 21: 130.

    CAS  PubMed  Google Scholar 

  • Ketz J (1985). Handbook of clinical audiology. 3rd ed. Academic Press: New York.

    Google Scholar 

  • Linstinsky JL, Siegal GP, Linstinsky MC (1998). Alpha-l-fucose: A potentially critical molecule in pathologic process including neoplasia. Am J Clin Pathol 110: 425–440.

    Google Scholar 

  • Lowenstein JM (1969). Methods in enzymology Vol 25. Academic Press: New York.

    Google Scholar 

  • Maehly AC, Chance B (1971). Methods of biochemical analysis. InterScience: New York.

    Google Scholar 

  • Manoj AJ, Kurup PA (1998). Changes in the glycosaminoglycans and glycoproteins in the rat brain during protein calorie malnutrition. J Clin Biochem Nutr 25: 149–157.

    Google Scholar 

  • Monia BP, Ecke J, Crooks ST (1990). Ubiquitination enzymes. Biotechnology 8: 209–215.

    Article  CAS  Google Scholar 

  • Olanow WC, Arendash GW (1994). Metals and free radicals in neurodegenerative disorders. Curr Opin Neurol 7: 548–558.

    Article  CAS  PubMed  Google Scholar 

  • Paglia DE, Valentine WN (1967). Studies on quantitative and qualitative characterisation of erythrocyte glutathione peroxidase. J Lab Clin Med 70: 158–162.

    CAS  PubMed  Google Scholar 

  • Palmer DN, Maureen AA, Robert DJ (1984). Separation of some neutral lipids by normal phase high performance liquid chromatography on a cyanopropyl column: Ubiquinone, dolichol and cholesterol levels in sheep liver. Anal Biochem 140: 315–319.

    Article  CAS  PubMed  Google Scholar 

  • Ploegh HL (1998). Viral strategies for immune evasion. Science 280(10): 248–253.

    Article  CAS  PubMed  Google Scholar 

  • Price WJ (1985). Spectrochemical analysis by atomic absorption. Wiley: New York.

    Google Scholar 

  • Rao AV, Ramakrishnan S (1975). Estimation of HMG CoA reductase activity. Clin Chem 21: 1523–1528.

    CAS  PubMed  Google Scholar 

  • Ravi Kumar A, Jyothi A, Kurup PA (2001). 14C-acetate incorporation into digoxin in rat rain and effect of digoxin administration. Ind J Exp Biol 3: 420–426.

    Google Scholar 

  • Ravi Kumar A, Augustine J, Kurup PA (1998). Digoxin—A model for hypothalamic regulation of neuronal transmission endocrine function, immunity and cytodifferentiation. Neurol India 46: 261–267.

    Google Scholar 

  • Saito K, Crowley JS, Markey SP, Heyes MP (1993). Kynurenine pathway and immune stimulation. J Biol Chem 268 (21): 15496–15503.

    CAS  PubMed  Google Scholar 

  • Tamura H, Shimoyama S, Sunaga Y (1992). Digoxin-like immunoreactive substance in urine of patients with mucocutaneous lymph node syndrome. Angiology 10: 856–865.

    Article  Google Scholar 

  • Wallace D, Hahn BH, Dubois R (1996). Lupus erythematosus. 5th ed, Williams and Wilkins: Baltimore.

    Google Scholar 

  • Wallach DF, Kamath VB (1966). Methods in enzymology, Vol 8. Academic Press: New York.

    Google Scholar 

  • Well-Malherbe R (1971). Methods of biochemical analysis. Wiley InterScience: New York.

    Google Scholar 

  • Wiedemann C, Cockcroft S (1998). Vesicular transport. Nature 394: 426–428.

    Article  CAS  PubMed  Google Scholar 

  • Will ED (1969). Lipid peroxide formation in microsomes — General consideration. Biochem J 113: 315–318.

    Google Scholar 

  • Wong PWK, O’Flynn ME, Inouye ME (1964). Flourimetric method for tyrosine. Clin Chem 10: 1098–1100.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parameswara Achutha Kurup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurup, R.K., Kurup, P.A. Hypothalamic digoxin-mediated model for subacute sclerosing panencephalitis. Journal of NeuroVirology 8, 326–334 (2002). https://doi.org/10.1080/13550280290100770

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280290100770

Keywords

Navigation