Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-31T00:55:44.427Z Has data issue: false hasContentIssue false

Rumen bacterial protein synthesis and the proportion of dietary protein escaping degradation in the rumen of sheep

Published online by Cambridge University Press:  26 February 2008

J. R. Mercer
Affiliation:
Deppartment of Applied Biology, University of Cambridge, Pembroke Street, Cambridge CB2 3DX
Sarah A. Allen
Affiliation:
Deppartment of Applied Biology, University of Cambridge, Pembroke Street, Cambridge CB2 3DX
E. L. Miller
Affiliation:
Deppartment of Applied Biology, University of Cambridge, Pembroke Street, Cambridge CB2 3DX
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of supplementing barley diets with urea (U), extracted, decorticated groundnut meal (GNM) or Peruvian fish meal (PFM) on rumen bacterial protein synthesis and the proportion of undegraded food protein passing to the duodenum of sheep has been examined.

2. Three wethers were given isonitrogenous, isoenergetic diets containing (g/kg dry matter (DM)): U 20, GNM 106 or PFM 78, the crude protein (nitrogen × 6.25) contents being 139, 145 and 148 respectively. The sheep were fed hourly, the mean daily intake of DM being 0.634 kg.

3. Rumen bacterial protein synthesis was determined using 35S and diaminopimelic acid (DAPA) as bacterial markers and polyethylene glycol (PEG) and chromic oxide as markers of digesta flow. Rumen volatile fatty acid (VFA) production rate was determined by a continuous infusion of [I-14C]acetate. 4. and DAPA gave similar estimates of the proportion of bacterial N in the trichloroacetic acid- precipitable nitrogen of the rumen digesta, the mean value being 0.86. The VFA production rate did not vary significantly between diets, the mean being 5.8 mol/24 h. The flow of bacterial N from the rumen was calculated from the PEG and Cr2O3, estimates of flow and the 35S and DAPA estimates of the proportion of bacterial N in the rumen. and DAPA gave similar values (mean 12.5 g/24 h) and Cr2O3, gave a slightly lower value (11.5 g/24 h) than PEG (13.5 g/24 h). Dietary effects, averaged over the four methods, were not significant; the values were 13.0, 13.4 and I 1–0 g/24 h for the U, GNM and PFM diets respectively.

5. Duodenal samples were taken from two 12h continuous collections from re-entrant cannulas and the DM flow adjusted to total recovery of Cr2O3,. The mean recovery of Cr203 at the duodenum was 0.798. The rates of flow of DM were 0.296,0.311 and 0.334 kg/24 h and of non-ammonia-N (NAN) 13.5, 15.2 and 15.4 g/24 h on the U, GNM and PFM diets respectively.

6. The concentrationsof the essential amino acids in duodenal digestaweregenerally higher with the PFM diet than with either of the other two diets. The flow of most amino acids through the duodenum was generally higher on the PFM and GNM diets than on the U diet.

7. The energetic efficiency of bacterial protein synthesis was calculated to be 2.1 g bacterial N/mol VFA or 28 g bacterial N/kg organic matter fermented in the rumen.

8. From the estimates of bacterial N flow from the rumen and NAN flow through the duodenum it was calculated that 0.22 and 0.69 of the supplemental N from GNM and PFM respectively passed through the rumen undegraded.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

REFERENCES

Abou Akkada, A. R., Bartley, E. E., Berube, R., Fina, L. R., Meyer, R. M., Henricks, D. & Julius, F. (1968). Appl. Microbiol. 16, 1475.CrossRefGoogle Scholar
Allen, S. A. & Miller, E. L. (1976). Br. J. Nutr. 36, 353.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J., Cammell, S. B. & Harrison, D. G. (1977). J. agric. Sci., Camb. 88, 61.CrossRefGoogle Scholar
Boxall, R. C. (1971). The utilisation of molassed sugar-beet pulp and urea in ruminant diets. PhD Thesis, University of Cambridge.Google Scholar
Bruce, J., Goodall, E. D., Kay, R. N. B., Phillipson, A. T. & Vowles, L. E. (1966). Proc. R. Soc. B. 166, 46.Google Scholar
Chamberlain, D. G., Thomas, P. C. & Wilson, A. G. (1976). J. Sci. Fd Agric. 27, 231.CrossRefGoogle Scholar
Erwin, E. S., Marco, G. J. & Emery, E. M. (1961). J. Dairy Sci. 4, 1768.CrossRefGoogle Scholar
Harrison, D. G., Beever, D. E., Thomson, D. J. & Osbourn, D. F. (1975). J. agric. Sci., Cumb. 85, 93.CrossRefGoogle Scholar
Hater, H. L. (1960). Biometrics 16, 671.CrossRefGoogle Scholar
Henderickx, H. & Martin, J. (1963). C. r. Rech. Inst. Encour. Rech. scient. Ind. Agric. 31, 7.Google Scholar
Hogan, J. P. & Phillipson, A. T. (1960). Br. J. Nutr. 14, 147.CrossRefGoogle Scholar
Hogan, J. P. & Weston, R. H. (1970). In Physiology of Digestion and Metabolism in the Ruminant, p. 474. [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Hume, I. D. (1974). Aust. J. agric. Res. 25, 155.CrossRefGoogle Scholar
Hume, I. D. & Bird, P. R. (1970). Aust. J. agric. Res. 21, 315.CrossRefGoogle Scholar
Hutton, K., Bailey, F. J. & Annison, E. F. (1971). Br. J. Nutr. 25, 165.CrossRefGoogle Scholar
Hydén, S. (1955). Lantbr Högsk. Annlr. 22, 139.Google Scholar
Jeffray, H., Olubajo, F. O. & Jewell, W. R. (1960). Analyt. Chem. 32, 306.CrossRefGoogle Scholar
Kennedy, P. M. & Milligan, L. P. (1978). Br. J. Nutr. 39, 105.CrossRefGoogle Scholar
Leng, R. A. (1970). In Physiology of Digestion and Metabolism in the Ruminant, p. 406 [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Leng, R. A. & Leonard, G. J. (1965). Br. J. Nutr. 19, 469.CrossRefGoogle Scholar
Lindsay, J. R. & Hogan, J. P. (1972). Aust. J. agric. Res. 23, 321.CrossRefGoogle Scholar
Ling, J. R. & Buttery, P. J. (1978). Br. J. Nutr. 39, 165.CrossRefGoogle Scholar
Little, C. O., Mitchell, G. E. Jr & Potter, G. D. (1968). J. Anim. Sci. 27, 1722.CrossRefGoogle Scholar
McDonald, I. W. (1948). Biochem. J. 4, 584.CrossRefGoogle Scholar
McDonald, I. W. (1952). Biochem. J. 51, 86.CrossRefGoogle Scholar
McMeniman, N. P., Ben-Ghedalia, D. & Armstrong, D. G. (1976). In Protein Metabolism and Nutrition, p. 217. [ Cole, D. J. A., Boorman, K. N., Buttery, P. J., Lewis, D., Neale, R. J. and Swan, H., editors]. London: Butterworths.Google Scholar
MacRae, J. C. & Armstrong, D. G. (1969). Br. J. Nutr. 23, 15.CrossRefGoogle Scholar
MacRae, J. C., Ulyatt, M. J., Pearce, P. D. & Hendtlass, J. (1972). Br. J. Nutr. 27, 39.CrossRefGoogle Scholar
Miller, E. L. (1968). Anim. Prod. 10, 243.CrossRefGoogle Scholar
Miller, E. L. (1973). Proc. Nutr. Soc. 32, 79.CrossRefGoogle Scholar
Nikolić, J. A. & Jovanović, M. (1973). J. agric. Sci., Cumb. 81, 1.CrossRefGoogle Scholar
Nolan, J. V. & Leng, R. A. (1972). Br. J. Nutr. 27, 177.CrossRefGoogle Scholar
Ørskov, E. R., Fraser, C. & MacDonald, I. (1971 a). Br. J. Nutr. 25, 225.CrossRefGoogle Scholar
Ørskov, E. R., Fraser, C. & MacDonald, I. (1971 b). Br. J. Nutr. 25, 243.CrossRefGoogle Scholar
Ørskov, E. R., Fraser, C. & MacDonald, I. (1972). Br. J. Nutr. 27, 491.Google Scholar
Owen, J. B., Davies, D. A. R., Miller, E. L. & Ridgman, W. J. (1967). Anim. Prod. 9, 509.Google Scholar
Owen, J. B., Miller, E. L. & Bridge, P. S. (1968). J. agric. Sci., Camb. 70, 223.CrossRefGoogle Scholar
Phillips, G. D. & Dyck, G. W. (1964). Can. J. Anim. Sci. 4, 220.CrossRefGoogle Scholar
Purser, D. B. & Buechler, S. M. (1966). J. Dairy Sci. 49, 81.CrossRefGoogle Scholar
Roberts, S. A. & Miller, E. L. (1969). Proc. Nutr. Soc. 28, 32A.Google Scholar
Satter, L. D. & Slyter, L. L. (1974). Br. J. Nutr. 32, 19.CrossRefGoogle Scholar
Sokal, R. R. & Rohlf, F. J. (1969). Biometry. The Principles and Practice of Statistics in Biological Research. San Francisco: W. H. Freeman & Co.Google Scholar
Varley, J. A. (1966). Analyst, Lund. 91, 119.CrossRefGoogle Scholar
Walker, D. J. (1965). In Physiology of Digestion in the Ruminant, p. 296. [Dougherty, R. W., editor]. London: Butterworths.Google Scholar
Walker, D. J., Egan, A. R., Nader, C. J., Ulyatt, M. J. & Storer, G. B. (1975). Aust. J. agric. Res. 26, 699.CrossRefGoogle Scholar
Walker, D. J. & Nader, C. J. (1968). Appl. Microbiol. 16, 1124.CrossRefGoogle Scholar
Whitelaw, F. G. & Preston, T. R. (1963). Anim. Prod. 5, 131.Google Scholar
Whitelaw, F. G., Preston, T. R. & Damon, G. S. (1961). Anim. Prod. 3, 127.Google Scholar