The the concept of nested species assemblages and its utility for understanding effects of habitat fragmentation

https://doi.org/10.1078/1439-1791-00040Get rights and content

Summary

The concept of nestedness represents a null model that measures the order in presence-absence matrices of species in different assemblages (Patterson & Atmar 1986, 2000). Based on the assumptions of the model, consequences of fragmentation and the vulnerability of species to habitat change can be quantified. Different species assemblages are considered to be nested perfectly, if subsets of one or more species are lost at a time as communities decline in species number and none of the species lost from the richer communities reappears in one of the species poor communities once it was lost. Nestedness is most prevalent in habitat fragments (islands) derived from a once continuous system with a common species pool that became isolated. The presence-absence matrix of species at given sites can be ordered in a way to maximize regularity. Then, the order of sites and species reflects habitat suitability of the sites and the vulnerability of a given species to fragmentation.

This concept of nestedness is illustrated and used

1. to derive estimates of minimum viable populations of lemurs in forest fragments of Madagascar;

2. to learn, at which size a forest fagment is perceived as “forest” by Malagasy reptiles;

3. to test whether the system of protected areas within the city of Hamburg represents a network for the local avifauna with species exchange or whether the single protected areas represent islands in the urban matrix;

4. to link life history traits to the vulnerability of species to the urban environment and to develop hypotheses on the causes underlying the evolution of nested patterns.

The analysis of the urban system revealed that the protected areas within the city limits of Hamburg are perceived by birds as islands in an urban matrix. “Green” links between the areas do not act as corridors that allow free movement of all species. The vulnerability of any given bird species to fragmentation of woodland habitat within the city depends on its ability to use the urban matrix between the protected areas and seems to be related to the investments in egg-shell material. Species with high requirements for egg-shells disappear earlier from the community. Analyses of nested patterns can provide insights in biodiversity processes and valuable recommendations for decision making where longterm data are not available. The main values of the analyses of nested patterns, however, is to develop hypotheses that can then be tested with more detailed studies.

Anwendung des Konzepts geschachtelter Gemeinschaften im Naturschutz

Das Konzept geschachtelter Artengemeinschaften repräsentiert ein Nullmodell mit dessen Hilfe Konsequenzen von Fragmentation auf die Biodiversität und die Anfälligkeit von Arten auf Veränderungen ihres Lebensraums quantifiziert werden können (Patterson & Atmar 1986, 2000). Artengemeinschaften sind vollständig geschachtelt, wenn bei abnehmender Artenzahl eine oder mehrere Arten aus den Gemeinschaften verschwinden und keine dieser Arten in artenreicheren Gemeinschaften wieder auftritt. Schachtelung tritt vor allem in fragmentierten Lebensräumen auf, wenn die Fragmente nicht “de novo” entstanden sind und besiedelt werden mussten, sondern aus einem ehemals zusammenhängenden gleichförmigen Lebensraum mit einheitlichem Artenbestand hervorgegangen sind. Arten und die Fragmente werden in einer 1/0 Matrix so angeordnet, dass die Matrix sukzessive von links oben nach rechts unten durch vorhandene Arten aufgefüllt wird. Gebiete werden in Reihen und Arten in Spalten aufgeführt. Die Anordnung der Gebiete und Arten reflektiert dann ein Maß für die Eignung der Gebiete und die Anfälligkeit der Arten gegenüber Fragmentation. Dieses Konzept wird illustriert und genutzt um

1. die Mindestgrüöße überlebensfähiger Populationen von Lemuren in Madagaskar zu bestimmen;

2. festzustellen, ab welcher Größe Waldreste von Reptilien Madagaskars als “Wald” erkannt werden;

3. zu überprüfen, ob das System von Schutzgebieten im Stadtgebiet Hamburgs für Vögel ein Verbundsystem oder isolierte Lebensräume darstellt;

4. zu analysieren, welche Eigenschaften (life history traits) bewirken, dass einige Vogelarten anfälliger gegenüber Fragmentation von Waldlebensräumen im Stadtgebiet sind als andere.

Die Analyse der Vogelgemeinschaften im Stadtgebiet Hamburgs ergab, dass die Schutzgebiete von den Vögeln Inselcharakter haben. Grünachsen agieren nicht als Korridore, die freien Austausch aller Arten erlauben. Die Anfälligkeit von Vogelarten in Wäldern oder Waldrändern ist umgekehrt proportional zu ihrer Fähigkeit, die die Schutzgebiete umgebende Stadt zu nutzen und zu der Masse an Material, das sie in Eischalen investieren müssen. Arten mit großen Gelegen sind eher in kleinen Gebieten im Stadtzentrum vertreten als Arten mit kleinen Gelegen.

Analyse der Schachtelung von Gemeinschaften kann ein wertvolles Werkzeug zur Unterstützung von Entscheidungsfindungen im Naturschutz sein, wenn langfristige Datenreihen oder detaillierte Untersuchungen nicht verfügbar sind. Die hauptsächliche Bedeutung dieser Analysen liegt aber darin, fokussierte Hypothesen zu entwickeln, die dann überprüft werden können.

References (48)

  • N. Brokaw

    Fragments past, present and future

    Trends in Ecology and Evolution

    (1998)
  • W. Atmar et al.

    The measure of order and disorder in the distribution of species in fragmented habitats

    Oecologia (Berlin)

    (1993)
  • G. Banse et al.

    Artenzahl und Flächengröße am Beispiel der Brutvögel Mitteleuropas

    Journal für Ornithologie

    (1984)
  • E. Bezzel

    Kompendium der Vögel Mitteleuropas

    (1993)
  • K. Böhning-Gaese

    Determinants of avian species richness at different spatial scales

    Journal of Biogeography

    (1997)
  • D.T. Bolger et al.

    Arthropods in urban habitat fragments in southern California: area, age, and edge effects

    Ecological Applications

    (2000)
  • J.H. Brown

    Macroecology

    (1995)
  • R.K. Colwell et al.

    A null model for null models in biogeography

  • R.R. Cook

    The relationship between nested subsets, habitat subdivision, and species diversity

    Oecologia (Berlin)

    (1995)
  • A. Cutler

    Nested faunas and extinctions in fragmented habitats

    Conservation Biology

    (1991)
  • K.F. Davies et al.

    Which traits of species predict population declines in experimental forest fragments?

    Ecology

    (2000)
  • C. Denys et al.

    Insect communities on experimental mugwort (Artemisia vulgaris L.) plots along an urban gradient

    Oecologia (Berlin)

    (1998)
  • B. Eisenbeiß

    Biodiversität in Hamburg am Beispiel eines Vergleiches der Avifauna in ausgewählten Naturschutzgebieten Hamburgs

    (2000)
  • J.U. Ganzhorn

    Nested patterns of species composition and its implications for lemur biogeography in Madagascar

    Folia Primatologica

    (1998)
  • Lemurs as indicators for assessing biodiversity in forest ecosystems of Madagascar: why it does not work

  • J.U. Ganzhorn et al.

    Lemurs and the regeneration of dry deciduous forest in Madagascar

    Conservation Biology

    (1999)
  • J.U. Ganzhorn et al.

    Primate communities: Madagascar

  • J.U. Ganzhorn et al.

    Effects of fragmentation and assessing minimum viable populations of lemurs in Madagascar

  • N.J. Gotelli

    Null model analysis of species co-occurence patterns

    Ecology

    (2000)
  • N.J. Gotelli et al.

    Null Models in Ecology

    (1996)
  • P. Harvey et al.

    The Comparative Method in Evolutionary Biology

    (1991)
  • M.L. Hunter

    Fundamentals of conservation biology

    (1996)
  • R. Kadmon

    Nested species subsets and geographic isolation: a case study

    Ecology

    (1995)
  • Cited by (35)

    • Nestedness of bird assemblages on urban woodlots: Implications for conservation

      2013, Landscape and Urban Planning
      Citation Excerpt :

      However, to what degree the change in noise pollution over time affects bird nestedness needs more detailed studies and warrants further evaluations. In the context of global and accelerating urbanization, an understanding of nested subset patterns and their mechanistic basis has important implications for conservation and can be used to direct management efforts in urban ecosystems (Fleishman, Donnelly, Fay, & Reeves, 2007; Ganzorn & Eisenbeiβ, 2001; Patterson, 1987). In our system, habitat nestedness is the main driver of species nestedness for all the bird assemblages and anthropogenic noise pollution exerts different influences on breeding birds and wintering species.

    • Biodiversity, Species Interactions and Ecological Networks in a Fragmented World

      2012, Advances in Ecological Research
      Citation Excerpt :

      The area needed to maintain populations is determined by fragment size, with smaller patches generally containing fewer individuals and species than larger patches (Debinski and Holt, 2000). The area effect on biodiversity can be predicted from species–area curves (Sabatino et al., 2010), and the set of species in smaller patches is often a fairly predictable subset of those in larger patches (nested structure; e.g. Ganzhorn and Eisenbeiss, 2001; Hill et al., 2011). Species richness in forest fragments in relation to fragment area (Brooks et al., 1997; Ewers and Didham, 2006) can mirror the classic species–area relationships known from island biogeography (MacArthur and Wilson, 1967).

    • Can human disturbance promote nestedness? Songbirds and noise in urban parks as a case study

      2012, Landscape and Urban Planning
      Citation Excerpt :

      According to the nested subset theory, nested assemblages are those where depauperate faunas or floras support a proper subset of the species found in richer biotas (Wright, Patterson, Mikkelson, Cutler, & Atmar, 1998); nestedness is a feature of metacommunities and has been widely reported for diverse taxonomic groups and biomes (Ulrich, Almeida-Neto, & Gotelli, 2009; Wright et al., 1998). The study of nestedness in real systems can give indications of the processes that shape species distributions and can be a useful tool for conservation and management (Fleishman, Donnelly, Fay, & Reeves, 2007; Ganzorn and Eisenbeiβ, 2000; but see Fischer & Lindenmayer, 2002). As a consequence, the nested subset theory has become a popular research area in ecology, and the number of studies documenting the presence of, and reasons for, nested assemblages has increased in recent times (see, for example, Sebastián-González, Botella, Paracuellos, & Sánchez-Zapata, 2010; Wang, Bao, Yu, Xu, & Ding, 2010).

    • Biodiversity on urban roundabouts-Hemiptera, management and the species-area relationship

      2004, Basic and Applied Ecology
      Citation Excerpt :

      Many factors have been suggested as important in determining the relative species richness of different urban habitats and habitat patches. These include the level of isolation and fragmentation, management practices, disturbance, and habitat type, age, area, diversity and connectivity, as well as the characteristics, such as relative mobility, of different taxonomic groups (Davis & Glick, 1978; Zapparoli, 1997; Denys & Schmidt, 1998; Fernández-Juricic, 2000; McIntyre, 2000; Savard, Clergeau, & Mennechez, 2000; Ganzhorn & Eisenbeiß, 2001; Hostetler & McIntyre, 2001; Rudd, Vala, & Schaefer, 2002; Whitmore, Crouch, & Slotow, 2002; Weller & Ganzhorn, 2004). In this study the species richness of Hemiptera was investigated in relation to both habitat management and area.

    View all citing articles on Scopus
    View full text