Plants and generalist predators as links between the below-ground and above-ground system

https://doi.org/10.1078/1439-1791-00031Get rights and content

Summary

This review highlights that the above-ground food web strongly depends on the structure and activity of the below-ground animal community. Two pathways connecting the below- and the above-ground community are distinguished: One functioning via soil animal-mediated changes in plant performance which in consequence affect herbivores and thereby the above-ground community; the second functioning via generalist predators which benefit from below-ground energy supply. The first pathway may be considered as bottom-up control of the above-ground community by below-ground animals, the second functions by strengthening top-down forces above the ground when generalist predators switch their attacks from decomposers amongst herbivores.

It is assumed that both pathways are of significant importance in many terrestrial systems, surprisingly, so far both are hardly investigated. It is stressed that in the plant pathway microbi-detritivores in soil like earthworms, collembolans and protozoans might be considerably more important than root herbivores which directly affect plant growth. The generalist predator pathway is considered to be particularly important in natural systems like grasslands, however, when employing intelligent management strategies which support microbi-detritivore populations and get generalist predators to switch prey from microbi-detritivores to herbivores this pathway may also help in controlling herbivore pest species in arable systems.

Dieses Review hebt hervor, dass das oberirdische Nahrungsnetz wesentlich von der Struktur und der Aktivität der Zersetzergemeinschaft im Boden abhängt. Zwei Verbindungswege, die das unterirdische Nahrungsnetz mit dem oberirdischen verknüpfen, werden dargelegt: Im Ersten fungieren Pflanzen als Bindeglied, deren Entwicklung durch Bodenorganismen beeinflusst wird, was sich auf ihre Nutzung durch Phytophage auswirkt und damit auf die gesamte oberirdische Gemeinschaft; im Zweiten fungieren generalistische Prädatoren als Bindeglied, die von zusätzlicher Beute aus der Zersetzergemeinschaft profitieren und damit, bei Wechsel auf oberirdische Beute wenn dessen Angebot zunimmt, Phytophage verstärkt kontrollieren. Der erste Weg verändert damit die “Bottom-up” Steuerung von Phytophagen, während im zweiten “Top-down” Effekte verstärkt werden.

Beide Verbindungswege sind wahrscheinlich in vielen terrestrischen Ökosystemen von großer Bedeutung, erstaunlicherweise wurden sie bisher jedoch kaum untersucht. Möglicherweise wirken sich Mikrobi-Detritivore wie Regenwürmer, Springschwänze und Einzeller sogar stärker auf Pflanzenwachstum aus als Wurzelfresser, die Pflanzen durch ihren Fraß direkt beeinflussen. Der Verbindungsweg über generalistische Prädatoren ist vermutlich vor allem in naturnahen Systemen wie Grasländern von großer Bedeutung. Durch den Einsatz durchdachter Bewirtschaftungssysteme könnte über diesen Weg jedoch auch versucht werden, Phytophage besser zu kontrollieren. Hierzu müssten Bewirtschaftungssysteme entwickelt werden, die zu Zeiten geringer Phytophagendichte generalistische Prädatoren über Stärkung der Zersetzergemeinschaft förden, um sie dann, bei verstärkter Entwicklung der Phytophagen, zum Beutewechsel auf diese zu zwingen.

References (120)

  • R.T. Lartey et al.

    Interactions of mycophagous collembola and biological control fungi in the suppression of Rhizoctonia solani

    Soil Biology and Biochemistry

    (1994)
  • J. Lussenhop

    Collembola as mediators of microbial symbiont effects upon soybean

    Soil Biology and Biochemistry

    (1996)
  • M. Maraun et al.

    Selection of microfungal food by six oribatid mite species (Oribatida, Acari) from two different beech forests

    Pedobiologia

    (1998)
  • A. Muscolo et al.

    Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism

    Soil Biology and Biochemistry

    (1999)
  • W.E. Snyder et al.

    Predator interference and the establishment of generalist predator populations for biocontrol

    Biological Control

    (1999)
  • P.M. Stephens et al.

    Influence of the earthworms Aporrectodea trapezoides and A. rosea on the disease severity of Rhizoctonia solani on subterranean clover and ryegrass

    Soil Biology and Biochemistry

    (1997)
  • P.M. Stephens et al.

    Influence of barley straw and the lumbricid earthworm Aporrectodea trapezoides on Rhizobium meliloti L5–30R, Psudomonas corrugata 2140R, microbial biomass and microbial activity in a red-brown earth soil

    Soil Biology and Biochemistry

    (1995)
  • J.M. Anderson

    Spatiotemporal effects of invertebrates on soil processes

    Biology and Fertility of Soils

    (1988)
  • J.M. Anderson et al.

    Tree root and macrofauna effects on nitrification and mineral nitrogen losses

    Revue de Ecologie et de Biologie du Sol

    (1988)
  • E. Baath et al.

    Impact of microbial-feeding animals on total soil activity and nitrogen dynamics: A soil microcosm experiment

    Oikos

    (1981)
  • G.H. Baker

    The ecology, management, and benefits of earthworms in agricultural soils, with particular reference to southern Australia

  • P.A. Barbosa

    Conservation biological control

    (1998)
  • R. Bommarco

    Feeding, reproduction and community impact of a predatory carabid in two agricultural habitats

    Oikos

    (1999)
  • Bonkowski M, Geoghegan IE, Birch ANE, Griffiths BS (2001) Effects of decomposer soil animals (earthworms and protozoa)...
  • V.A. Borowicz

    A fungal root symbiont modifies plant resistance to an insect herbivore

    Oecologia

    (1997)
  • K.E. Boyle et al.

    Influence of earthworms on soil properties and grass production in reclaimed cutover peat

    Biology and Fertility of Soils

    (1997)
  • J.P. Bryant et al.

    Carbon-nutrient balance of boreal plants in relation to vertebrate herbivory

    Oikos

    (1983)
  • P.E. Carter et al.

    Top-down effects in soybean agroecosystems: spider density affects herbivore damage

    Oikos

    (1995)
  • P.A. Chiverton

    Predator density manipulation and its effects on populations of Rhopalosiphum padi (Hom.: Aphididae) in spring barley

    Annals of Applied Biology

    (1986)
  • M. Clarholm

    The microbial loop

  • P.D. Coley et al.

    Resource availability and antiherbivore defense

    Science

    (1985)
  • A.F.G. Dixon

    Aphid ecology

    (1985)
  • A.F.G. Dixon et al.

    The role of food quality and competition in shaping the seasonal cycle in the reproductive activity of the sycamore aphid

    Oecologia

    (1993)
  • B.M. Doube et al.

    Life in a complex community: functional interactions between earthworms, organic matter, microorganisms, and plant growth

  • K. Ekschmitt et al.

    Spiders, carabids, and staphylinids: the ecological potential of predatory macroarthropods

  • G. Ganade et al.

    Effects of below-ground insects, mycorrhizal fungi and soil fertility on the establishment of Vicia in grassland communities

    Oecologia

    (1997)
  • A.C. Gange et al.

    Positive effects of an arbuscular mycorrhizal fungus on aphid life history traits

    Oecologia

    (1999)
  • A.C. Gange et al.

    Effects of root herbivory by an insect on a foliar feeding species, mediated through changes in the host plant

    Oecologia

    (1989)
  • A.C. Gange et al.

    Reduction of black vine weevil larval growth by vesicular-arbuscular mycorrhizal infection

    Entomologica Experimentalis et Applicata

    (1994)
  • A.C. Gange et al.

    Performance of the thistle gall fly, Urophora cardui, in relation to host plant nitrogen and mycorrhizal colonization

    New Phytologist

    (1997)
  • A.C. Gange et al.

    Interactions between arbuscular mycorrhizal fungi and foliar feeding insects in Plantago lanceolata L

    New Phytologist

    (1994)
  • N.G. Hairston et al.

    Community structure, population control, and competition

    American Naturalist

    (1960)
  • N.G. Hairston

    Ecological experiments: purpose, design and execution

    (1989)
  • K.M. Harinikumar et al.

    Potential of earthworms, ants, millipedes, and termites for dissemination of vesicular-arbuscular mycorrhizal fungi in soil

    Biology and Fertility of Soils

    (1994)
  • S.E. Hartley et al.

    Plant chemistry and herbivory, or why the world green is

  • B.A. Hawkins et al.

    Is the biological control of insects a natural phenomenon?

    Oikos

    (1999)
  • J.L. Hayes et al.

    Prey and nocturnal activity of wolf spiders (Araneae: Lycosidae) in cotton fields in the delta region of the Mississippi

    Environmental Entomology

    (1990)
  • A. Hector et al.

    Plant diversity and productivity experiments in European grasslands

    Science

    (1999)
  • J. Helenius

    Effect of epigeal predators on infestation by the aphid Rhopalosiphum padi and on grain yield of oats in monocrops and mixed intercrops

    Entomologia Experimentalis et Applicata

    (1990)
  • M. Hoogerkamp et al.

    Effect of earthworms on grassland on recently reclaimed polder soils in the Netherlands

  • Cited by (177)

    • Loss of plant functional groups impacts soil carbon flow by changing multitrophic interactions within soil micro-food webs

      2022, Applied Soil Ecology
      Citation Excerpt :

      However, studies do not report the possible effects of ‘vertical species loss’ across trophic levels, such as effects of variations in plant community diversity on trophic levels (Duffy et al., 2007; Hooper et al., 2005; Schuldt et al., 2019). The presence of abundant specificity among microbes, nematodes, and plants drives interactions between soil biota and aboveground communities (Anderson, 2011; Scheu, 2001; Wardle et al., 2004). Therefore, diversity of aboveground plants may affect coexistence of diverse soil organisms through food sources (litter quality and composition), trophic relationships (Viketoft et al., 2014), or provision of various environmental conditions (e.g., temperature, humidity) and complex habitats (Anderson, 1995).

    • Planted-green cover crops in maize/soybean rotations confer stronger bottom-up than top-down control of slugs

      2022, Agriculture, Ecosystems and Environment
      Citation Excerpt :

      Conservation tillage methods reduce soil disturbance and retain surface residue, which can improve agroecosystem function while reducing operational costs (Kibblewhite et al., 2008). For example, reduced till increases diversity of earthworms and soil mesofauna, which serve as alternative prey to predators such as spiders and ground beetles (Agustí et al., 2003; Muñoz-Cárdenas et al., 2017; Scheu, 2001; Symondson et al., 2000). This additional prey source decouples generalist predators from aboveground herbivores, supporting predator populations even when herbivore populations are low (Scheu, 2001).

    • Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis

      2020, Agriculture, Ecosystems and Environment
      Citation Excerpt :

      The increase in SOC storage (and hence SOM) has significant implications for provisioning (e.g., increased crop productivity) as well as regulating (e.g., carbon sequestration, soil erosion control) ecosystem services (Barrios, 2007; Palmer et al., 2017). At the farm scale, not only does retaining high SOM affect nutrient availability and growth of crop plants, but also soil biodiversity and bottom-up effects on crop pests and their natural enemies (Scheu, 2001; Veen et al., 2019). For example, high SOM content in soil can support a greater diversity of soil organisms, which provide alternative food sources for natural enemies that help to suppress crop pests (Scheu, 2001).

    View all citing articles on Scopus
    View full text