Journal of Biological Chemistry
Volume 280, Issue 48, 2 December 2005, Pages 39950-39961
Journal home page for Journal of Biological Chemistry

Genes: Structure and Regulation
Elevated Levels of the 64-kDa Cleavage Stimulatory Factor (CstF-64) in Lipopolysaccharide-stimulated Macrophages Influence Gene Expression and Induce Alternative Poly(A) Site Selection*

https://doi.org/10.1074/jbc.M508848200Get rights and content
Under a Creative Commons license
open access

Lipopolysaccharide (LPS) activation of murine RAW 264.7 macrophages influences the expression of multiple genes through transcriptional and post-transcriptional mechanisms. We observed a 5-fold increase in CstF-64 expression following LPS treatment of RAW macrophages. The increase in CstF-64 protein was specific in that several other factors involved in 3′-end processing were not affected by LPS stimulation. Activation of RAW macrophages with LPS caused an increase in proximal poly(A) site selection within a reporter mini-gene containing two linked poly(A) sites that occurred concomitant with the increase in CstF-64 expression. Furthermore, forced overexpression of the CstF-64 protein also induced alternative poly(A) site selection on the reporter minigene. Microarray analysis performed on CstF-64 overexpressing RAW macrophages revealed that elevated levels of CstF-64 altered the expression of 51 genes, 14 of which showed similar changes in gene expression with LPS stimulation. Sequence analysis of the 3′-untranslated regions of these 51 genes revealed that over 45% possess multiple putative poly(A) sites. Two of these 51 genes demonstrated alternative polyadenylation under both LPS-stimulating and CstF-64-overexpressing conditions. We concluded that the physiologically increased levels of CstF-64 observed in LPS-stimulated RAW macrophages contribute to the changes in expression and alternative polyadenylation of a number of genes, thus identifying another level of gene regulation that occurs in macrophages activated with LPS.

Cited by (0)

*

This work was supported by National Institutes of Health Grants CA86433 (to C. M.), GM57384 (to S. M. M.), and T32 CA82084. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The on-line version of this article (available at http://www.jbc.org) contains Tables S1 and S2 and Fig. S1.