Journal of Biological Chemistry
Volume 275, Issue 48, 1 December 2000, Pages 37672-37678
Journal home page for Journal of Biological Chemistry

MECHANISMS OF SIGNAL TRANSDUCTION
Dominant Negative MyD88 Proteins Inhibit Interleukin-1β/Interferon-γ-mediated Induction of Nuclear Factor κB-dependent Nitrite Production and Apoptosis in β Cells*

https://doi.org/10.1074/jbc.M005150200Get rights and content
Under a Creative Commons license
open access

Insulin-dependent diabetes mellitus is an autoimmune disease in which pancreatic islet β cells are destroyed by a combination of immunological and inflammatory mechanisms. In particular, cytokine-induced production of nitric oxide has been shown to correlate with β cell apoptosis and/or inhibition of insulin secretion. In the present study, we investigated whether the interleukin (IL)-1β intracellular signal transduction pathway could be blocked by overexpression of dominant negative forms of the IL-1 receptor interacting protein MyD88. We show that overexpression of the Toll domain or the lpr mutant of MyD88 in βTc-Tet cells decreased nuclear factor κB (NF-κB) activation upon IL-1β and IL-1β/interferon (IFN)-γ stimulation. Inducible nitric oxide synthase mRNA accumulation and nitrite production, which required the simultaneous presence of IL-1β and IFN-γ, were also suppressed by ∼70%, and these cells were more resistant to cytokine-induced apoptosis as compared with parental cells. The decrease in glucose-stimulated insulin secretion induced by IL-1β and IFN-γ was however not prevented. This was because these dysfunctions were induced by IFN-γ alone, which decreased cellular insulin content and stimulated insulin exocytosis. These results demonstrate that IL-1β is involved in inducible nitric oxide synthase gene expression and induction of apoptosis in mouse β cells but does not contribute to impaired glucose-stimulated insulin secretion. Furthermore, our data show that IL-1β cellular actions can be blocked by expression of MyD88 dominant negative proteins and, finally, that cytokine-induced β cell secretory dysfunctions are due to the action of IFN-γ.

Cited by (0)

Published, JBC Papers in Press, August 30, 2000, DOI 10.1074/jbc.M005150200

*

This work was supported by Grants 31-46958.96 from the Swiss National Science Foundation (to B. T.) and 31-49662.96 (to E. F. B.). This work was also supported by Juvenile Diabetes Foundation International Grant 4-1999-844 and Modex Thérapeutiques.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Contributed equally to the work.