Journal of Biological Chemistry
Volume 275, Issue 2, 14 January 2000, Pages 1183-1190
Journal home page for Journal of Biological Chemistry

MEMBRANES AND BIOENERGETICS
The Calcium Sensing Receptor and Its Alternatively Spliced Form in Murine Epidermal Differentiation*

https://doi.org/10.1074/jbc.275.2.1183Get rights and content
Under a Creative Commons license
open access

We have recently reported that human keratinocytes express both the full-length calcium sensing receptor (CaR) and an alternatively spliced form lacking exon 5, which were suggested to be involved in calcium induced keratinocyte differentiation. To understand further the role of these CaRs, we analyzed the structure of mouse CaRs, and investigated their role using a mouse model in which only the full-length CaR was disrupted. Our results show that both the full-length and the alternatively spliced variant lacking exon 5 encoding 77 amino acids of the extracellular domain were expressed in mouse epidermis. The deletion of the full-length CaR increased the production of the alternatively spliced form of CaR in mutant mice. The keratinocytes derived from these mutant mice did not respond to extracellular calcium, suggesting that the full-length CaR is required to mediate calcium signaling in the keratinocytes. The loss of the full-length CaR altered the morphologic appearance of the epidermis and resulted in a reduction of the mRNA and protein levels of the keratinocyte differentiation marker, loricrin. These results indicate that CaR is important in epidermal differentiation, and that the alternatively spliced form does not fully compensate for loss of the full-length CaR.

Cited by (0)

*

This work was supported by Grants R01-AR38386 and P01-AR39448 from the National Institutes of Health and by a Merit Review award from the Department of Veterans Affairs.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The nucleotide sequence(s) reported in this paper has been submitted to the GenBank™/EMBL Data Bank with accession number(s) AF110178 and AF110179.