Journal of Biological Chemistry
Volume 272, Issue 40, 3 October 1997, Pages 25333-25338
Journal home page for Journal of Biological Chemistry

MEMBRANES AND BIOENERGETICS
Modulation of Cardiac Ryanodine Receptors by Sorcin*

https://doi.org/10.1074/jbc.272.40.25333Get rights and content
Under a Creative Commons license
open access

Sorcin is a widely expressed, 22-kDa Ca2+-binding protein initially identified in multidrug-resistant cells. In the heart, sorcin localizes to the dyadic junctions of transverse tubules and sarcoplasmic reticulum and coimmunoprecipitates with the Ca2+ release channel/ryanodine receptor (RyR) (Meyers, M. B., Pickel, V. M., Sheu, S.-S., Sharma, V. K., Scotto, K. W., and Fishman, G. I. (1995)J. Biol. Chem.270, 26411–26418). We have investigated a possible functional interaction between sorcin and cardiac RyR using purified recombinant sorcin in [3H]ryanodine binding experiments and single channel recordings of RyR. The open probability of single RyR was decreased significantly by the addition of sorcin to the cytoplasmic side of the channel (IC50 ∼ 480 nm). In addition, sorcin completely inhibited [3H]ryanodine binding with an IC50 ∼ 700 nm. Inhibition occurred over a wide range of [Ca2+], and sorcin-modulated RyR remained Ca2+-dependent. Furthermore, caffeine-activated RyRs were also inhibited by sorcin at low [Ca2+] (pCa 7), suggesting that Ca2+ is not an obligatory factor for sorcin inhibition of RyR. Comparisons of these inhibitory effects with those of calmodulin and calpain, proteins structurally related to sorcin, suggested that the interaction of sorcin with cardiac RyR was distinct from and independent of either of these modulatory proteins. Phosphorylation of sorcin with the catalytic subunit of protein kinase A significantly decreased the ability of sorcin to modulate RyR. These results suggest that sorcin may modulate RyR function in a normal cell environment and that the level of modulation is in turn influenced by signaling pathways that increase protein kinase A activity.

Cited by (0)

*

This work was supported by Grant HL55438 and a grant-in-aid from the American Heart Association (to H. H. V.) and by an Albert Einstein College of Medicine Molecular Cardiology endowment (to M. B. M. and G. I. F.).The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Established Investigator of the American Heart Association.