Skip to main content
Log in

Der Oktanol/Wasser Verteilungskoeffizient — Das Allheilmittel der Umweltchemie?

The octanol/water partitioning coefficient — The remedy of environmental chemistry?

  • UWSF-ESPR-Beitragsserie: Persistente Organische Schadstoffe (POPs)
  • Published:
Umweltwissenschaften und Schadstoff-Forschung Submit manuscript

Zusammenfassung

Das Umweltverhalten von persistenten organischen Schadstoffen hängt wesentlich von ihrer Verteilung zwischen Luft, Wasser und natürlichen organischen Phasen ab. Angesichts der großen Anzahl von Schadstoffen einerseits und der großen Variabilität natürlicher organischer Phasen andererseits ist eine experimentelle Bestimmung aller relevanter Verteilungskonstanten ausgeschlossen. In der Umweltchemie ist es daher seit langem üblich, die Verteilungskonstanten zwischen Luft oder Wasser und einer organischen Phase mit den entsprechenden Oktanol/Luft oder Oktanol/Wasser-Verteilungskonstanten der Substanzen zu korrelieren. Eine Abschätzung unbekannter Verteilungskonstanten mit Hilfe solcher Beziehungen kann aber zu erheblichen Fehlern führen. Die Gründe dafür sind: a) Fehler in den Kow oder Koa Daten; b) die Substanz gehört nicht zu der Substanzklasse, für die die Kow-Beziehung erstellt wurde; c) die organische Phase unterscheidet sich von derjenigen, für die die Kow-Beziehung erstellt wurde. Obwohl diese Fehler zum Teil sehr groß werden können, werden sie häufig in Kauf genommen, da keine Alternativen bekannt sind. Hier soll ein Ansatz zur Vorhersage von Verteilungskonstanten beschrieben werden, der es erlaubt solche Fehler deutlich zu minimieren. Dieser Ansatz beschreibt die van-der-Waals Wechselwirkungen und H-Brücken Bindungen zwischen der Substanz und den Phasen durch getrennte Terme. Eine Reihe von Beispielen zeigen die beiden Ansätze im Vergleich.

Abstract

Equilibrium partition constants are required for assessing the transport and exposure of POPs in the environment. Due to the high number of compounds in daily use and the high number of different natural phases it is not conceivable to measure all partition constants of interest. In environmental chemistry the partitioning of POPs between water or air and natural organic phases is usually correlated to their respective partitioning into octanol (i.e. log Kow or log Koa). However, the predictive power of such one-parameter Linear Free Energy Relationships (LFER) is quite limited because no single descriptor is able to describe appropriately all the molecular interactions that determine the equilibrium partitioning of a given compound between two phases. Therefore, different compound classes usually require different log Kow or log Koa relationships. Furthermore, the heterogeneity of natural organic phases (e.g., different types of soil organic matter) is not reflected in correlations with log Kow. Poly-parameter LFER’s, which describe the intermolecular interactions relevant for the partitioning process, are a promising alternative. It can be demonstrated by a variety of applications that such poly-parameter LFERs are very useful tools to describe the partitioning of large sets of very diverse compounds with a single equation. Furthermore, in contrast to simple log Kow relationships, these equations can be used to characterize the sorbent properties of a given complex sorbent. Interestingly, to date, only few applications of poly-parameter LFERs have been published in the field of environmental chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Guichert R, Bakker DJ, De Voogt P, Van Den Berg F, Van Dijk HFG, Van Pul WAJ (1999): Environmental Risk Assessment for Pesticides in the Atmosphere; the Results of an International Workshop. Water, Air, and Soil Pollution 115, 5–9

    Article  Google Scholar 

  2. Pontolillo J, Eganhouse RP (2001): The Search for Reliable Aqueous Solubility (Sw) and Octanol-Water Partition Coefficient (Kow) Data for Hydrophobic Organic Compounds: DDT and DDE as a Case Study. US Geological Survey: Reston, Virginia

    Google Scholar 

  3. Sablijc A, Güsten H, Verhaar H, Hermens J (1995): QSAR Modelling of Soil Sorption. Improvements and Systematics of log Koc vs. log Kow correlations. Chemosphere 31, 4489–4514

    Article  Google Scholar 

  4. Gerstl Z (1990): Estimation of Organic Chemical Sorption by Soils. J Contam Hydrol 6, 357–375

    Article  CAS  Google Scholar 

  5. Goss K-U, Schwarzenbach RP (2001): Linear Free Energy Relationships Used To Evaluate Equilibrium Partitioning of Organic Compounds. Environ Sci Technol 35, 1–9

    Article  CAS  Google Scholar 

  6. Cline PV, Delfino JJ, Rao PSC (1991): Environ Sci Technol 25, 914–920

    Article  CAS  Google Scholar 

  7. Schmidt TC, Kleinert P, Stengel C, Goss K-U, Haderlein SB (2002): Polar Fuel Constituents — Compound Identification and Equilibrium Partitioning between Non-Aqueous Phase Liquids and Water. Environ Sci Technol 36, 4074–4080

    Article  CAS  Google Scholar 

  8. Goss K-U, Schwarzenbach RP (1998): Gas/Solid and Gas/Liquid Partitioning of Organic Compounds: Critical Evaluation of the Interpretation of Equilibrium Constants. Environ Sci Technol 32, 2025–2032

    Article  CAS  Google Scholar 

  9. Mackay D (1991): Multimedia Environmental Models. Lewis: Chelsea

    Google Scholar 

  10. Baum EJ (1998): Chemical Property Estimation. Lewis: Boca Raton

    Google Scholar 

  11. Goss K-U, Schwarzenbach RP (2001): Adsorption of a Diverse Set of Organic Vapors on Quartz, CaCO3 and a-Al2O3 at different Relative Humidities. J Colloid Interface Sci 252, 31–41

    Article  Google Scholar 

  12. Cotham WE, Bidleman TF (1995): Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Air at an Urban and a Rural Site near Lake Michigan. Environ Sci Technol 29, 2782–2789

    Article  CAS  Google Scholar 

  13. Kömp P, McLachlan MS (1997): Interspecies Variability of the Plant/Air Partitioning of Polychlorinated Biphenyls. Environ Sci Technol 31, 2944–2948

    Article  Google Scholar 

  14. Abraham MH, Chadha HS, Whiting GS, Mitchell RC (1994): Hydrogen Bonding. 32. An Analysis of Water-Octanol and Water-Alkane Partitioning and the Dlog P Parameter of Seiler. J Pharm Sci 83, 1085–1100

    Article  CAS  Google Scholar 

  15. Abraham MH, Andonian-Haftvan J, Whiting GS, Leo A, Taft RS (1994): Hydrogen Bonding. Part 34. The Factors that Influence the Solubility of Gases and Vapours in Water at 298 K, and a New Method for its Determination. J Chem Soc Perkin Trans 2, 1777–1791

    Google Scholar 

  16. Abraham MH, McGowan JC (1987): The Use of Characteristic Volumes to Measure Cavity Terms in Reversed Phase Liquid Chromatography. Chromatographia 23, 243–246

    Article  CAS  Google Scholar 

  17. Abraham MH, Poole CF, Poole SK (1999): Classification of stationary phases and other materials by gas chromatography. J Chromatogr A 842, 79–114

    Article  CAS  Google Scholar 

  18. Abraham MH, Whiting GS, Carr PW, Ouyang H (1998): Hydrogen bonding. Part 45. The solubility of gases and vapours in methanol at 298 K: an LFER analysis. J Chem Soc Perkin Trans 2, 1385–1390

    Google Scholar 

  19. Reta M, Carr PW, Sadek PC, Rutan SC (1999): Comparative Study of Hydrocarbon, Fluorocarbon, and Aromatic Bonded RP-HPLC Stationary Phases by Linear Solvation Energy Relationships. Anal Chem 71, 3484–3496

    Article  CAS  Google Scholar 

  20. Abraham MH, Weathersby PK (1994): Hydrogen Bonding. 30. Solubility of Gases and vapors in Biological Liquids and Tissues. J Pharm Sci 83, 1450–1456

    Article  CAS  Google Scholar 

  21. Platts JA, Abraham MH (2000): Partition of Volatile Organic Compounds from Air and from Water into Plant cuticular Matrix: An LFER Analysis. Environ Sci Technol 34, 318–323

    Article  CAS  Google Scholar 

  22. Goss K-U, Buschmann J (2003): Adsorption of a diverse set of organic vapors on tale, bentonite, kaolinite, NH4CL at different relative humidities. J Chem Eng Data, in preparation

  23. Roth C, Goss K-U, Schwarzenbach RP (2001): Adsorption of a Diverse Set of Organic Vapors on a Bulk Water Surface. J Colloid Interface Sci 252, 21–30

    Article  Google Scholar 

  24. Abraham MH, Gola JMR, Kumarsingh R, Cometto-Muniz JE, Cain WS (2000): Connection between chromatographic data and biological data. J Chromatogr B 745, 103–115

    Article  CAS  Google Scholar 

  25. Abraham MH, Kumarsingh R, Cometto-Muniz JE, Cain WS, Rosés M, Bosch E, Díaz ML (1998): The determination of solvation descriptors for terpenes, and the prediction of nasal pungency thresholds. J Chem Soc Perkin Trans 2, 2405–2411

    Google Scholar 

  26. Goss K-U, Schwarzenbach RP (2003): Rules of Thumb for Estimating Equilibrium Partitioning of Organic Compounds — Success and Pitfalls. J Chem Educ, in press

  27. Platts JA, Abraham MH, Butina D, Hersey A (2000): Estimation of Molecular Linear Free Energy Relationship Descriptors by a Group Contribution Approach. 2. Prediction of Partition Coefficients. J Chem Inf Comput Sci 40, 71–80

    CAS  Google Scholar 

  28. Li J, Zhang Y, Carr PW (1992): Novel Triangle Scheme for Classification of Gas Chromatographic Phases Based on Solvatochromic Linear Solvation Energy Relationships. Anal Chem 64, 210–218

    Article  CAS  Google Scholar 

  29. Snyder LR, Carr PW, Rutan SC (1993): Solvatochromically based solvent-selectivity triangle. J Chromatogr A 656, 537–547

    Article  CAS  Google Scholar 

  30. Abraham MH, Chadha HS (1996): In: Lipophilicity in Drug Action and Toxicology (Eds: Pliska V, Testa B, van de Waterbeemd H), VCH: Weinheim, p 311–336

    Chapter  Google Scholar 

  31. van Oss CJ (1994): Interfacial Forces in Aqueous Media. Marcel Dekker: New York

    Google Scholar 

  32. Lloyd DR, Ward TC, Schreiber HP, Pizana CC (Eds) (1989): Inverse Gas Chromatography. ACS Symposium Series, Vol 391. ACS: Washington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai -Uwe Goss.

Additional information

OnlineFirst: 17. Januar 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goss, K.U. Der Oktanol/Wasser Verteilungskoeffizient — Das Allheilmittel der Umweltchemie?. UWSF - Z Umweltchem Ökotox 15, 273–279 (2003). https://doi.org/10.1065/uwsf2003.01.050

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1065/uwsf2003.01.050

Schlagwörter

Keywords

Navigation