In this paper, artificial neural networks (ANNs) have been used for the performance ratio modelling of four photovoltaic (PV) modules. The PV modules are selected from three different silicon technologies including one monocrystalline, two polycrystalline, and one micromorph (a-Si/μc-Si) modules. The adopted ANN architecture is a multilayer perceptron (MLP). The inputs of the ANN models are the solar irradiance on the PV module plane and air ambient temperature, while the output is the PV module performance ratio. It is shown that ANN models with three layers and five hidden neurons accurately model the performance ratio regardless of PV module technology. The results obtained from the ANN model are compared with those obtained from the five parameter model (L5P). The model comparison is done through two widely used forecasting errors: the root mean square error (RMSE) and the mean absolute percentage of error (MAPE). The values of both RMSE and MAPE are less than 0.02 for MLP based models and are about three to nine times lower than those obtained from the electrical model. It is also shown that the poor fit of the L5P model is due to the bad estimation of series and shunt resistances.

1.
Almonacid
,
F.
,
Pérez-Higueras
,
P. J.
,
Fernández
,
E. F.
, and
Hontoria
,
L.
, “
A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator
,”
Energy Convers. Manage.
85
,
389
398
(
2014
).
2.
Almonacid
,
F.
,
Rus
,
C.
,
Pérez-Higueras
,
P.
, and
Hontoria
,
L.
, “
Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks
,”
Energy
36
,
375
384
(
2011
).
3.
Alonso García
,
M. C.
and
Balenzategui
,
J. L.
, “
Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculations
,”
Renewable Energy
29
,
1997
2010
(
2004
).
4.
Amrouche
,
B.
,
Sicot
,
L.
,
Guessoum
,
A.
, and
Belhamel
,
M.
, “
Experimental analysis of the maximum power point's properties for four photovoltaic modules from different technologies: Monocrystalline and polycrystalline silicon, CIS and CdTe
,”
Sol. Energy Mater. Sol. Cells
118
,
124
134
(
2013
).
5.
Aste
,
N.
,
Del Pero
,
C.
, and
Leonforte
,
F.
, “
PV technologies performance comparison in temperate climates
,”
Sol. Energy
109
,
1
10
(
2014
).
6.
Avrutin
,
V.
,
Izyumskaya
,
N.
, and
Morkoç
,
H.
, “
Amorphous and micromorph Si solar cells: Current status and outlook
,”
Turk. J. Phys.
38
,
526
542
(
2014
).
7.
Bai
,
J.
,
Liu
,
S.
,
Hao
,
Y.
,
Zhang
,
Z.
,
Jiang
,
M.
, and
Zhang
,
Y.
, “
Development of a new compound method to extract the five parameters of PV modules
,”
Energy Convers. Manage.
79
,
294
303
(
2014
).
8.
Baroughi
,
M. F.
,
Wang
,
J.
, and
Shanmugam
,
M.
, “
Micromorph Si-multicrystalline Si tandem solar cells for cost effective photovoltaics
,” in
33rd IEEE Photovoltaic Specialists Conference, PVSC'08, IEEE
(
2008
), pp.
1
4
.
9.
Basheer
,
I. A.
and
Hajmeer
,
M.
, “
Artificial neural networks: Fundamentals, computing, design, and application
,”
J. Microbiol. Methods
43
,
3
31
(
2000
).
10.
Bonkoungou
,
D.
,
Koalaga
,
Z.
, and
Njomo
,
D.
, “
Modelling and simulation of photovoltaic module considering single-diode equivalent circuit model in MATLAB
,”
Int. J. Emerg. Technol. Adv. Eng.
3
,
493
502
(
2013
).
11.
Bücher
,
K.
, “
Site dependence of the energy collection of PV modules
,”
Sol. Energy Mater. Sol. Cells
47
,
85
94
(
1997
).
12.
Cañete
,
C.
,
Carretero
,
J.
, and
Sidrach-de-Cardona
,
M.
, “
Energy performance of different photovoltaic module technologies under outdoor conditions
,”
Energy
65
,
295
302
(
2014
).
13.
Celik
,
A. N.
, “
Artificial neural network modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules
,”
Sol. Energy
85
,
2507
2517
(
2011
).
14.
Ceylan
,
İ.
,
Erkaymaz
,
O.
,
Gedik
,
E.
, and
Gürel
,
A. E.
, “
The prediction of photovoltaic module temperature with artificial neural networks
,”
Case Stud. Therm. Eng.
3
,
11
20
(
2014a
).
15.
Ceylan
,
İ.
,
Gedik
,
E.
,
Erkaymaz
,
O.
, and
Gürel
,
A. E.
, “
The artificial neural network model to estimate the photovoltaic modul efficiency for all regions of the Turkey
,”
Energy Build.
84
,
258
267
(
2014b
).
16.
Chan
,
D. S. H.
,
Phillips
,
J. R.
, and
Phang
,
J. C. H.
, “
A comparative study of extraction methods for solar cell model parameters
,”
Solid-State Electron.
29
,
329
337
(
1986
).
17.
Cornaro
,
C.
and
Musella
,
D.
, “
Performance analysis of PV modules of various technologies after more than one year of outdoor exposure in Rome
,” in
Proceedings of the III International Conference on Applied Energy
(
2011
).
18.
De Blas
,
M. A.
,
Torres
,
J. L.
,
Prieto
,
E.
, and
Garcıa
,
A.
, “
Selecting a suitable model for characterizing photovoltaic devices
,”
Renewable Energy
25
,
371
380
(
2002
).
19.
De Soto
,
W.
,
Klein
,
S. A.
, and
Beckman
,
W. A.
, “
Improvement and validation of a model for photovoltaic array performance
,”
Sol. Energy
80
,
78
88
(
2006
).
20.
Demuth
,
H.
,
Beale
,
M.
, and
Hagan
,
M.
,
Neural Network ToolboxTM 6 User's guide. Mathworks Inc.
(
2008
).
21.
Gardner
,
M. W.
and
Dorling
,
S. R.
, “
Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
,”
Atmos. Environ.
32
,
2627
2636
(
1998
).
22.
Guérin de Montgareuil
,
A.
,
Sicot
,
L.
,
Martin
,
J.-L.
,
Mezzasalma
,
F.
,
Delesse
,
Y.
, and
Merten
,
J.
, “
A new tool for the MotherPV method: Modeling of the Irradiance Coefficient of Photovoltaic Modules
,” in
24th European Photovoltaic Solar Energy Conference
, 21–25 September 2009,
Hamburg
,
Germany
(
2009
), pp.
3305
3309
.
23.
Guérin de Montgareuil
,
A.
,
Sicot
,
L.
,
Mohring
,
H.
,
Stellbogen
,
D.
,
Zdanowicz
,
T.
,
Prorok
,
M.
,
Kołodenny
,
W.
,
Martin
,
J.-L.
,
Mezzasalma
,
F.
,
Delesse
,
Y.
, and
Merten
,
J.
, “
First results of the application of the MotherPV method to CIS modules
,” in
24th European Photovoltaic Solar Energy Conference
, 21-25 September 2009, Hamburg, Germany (
2009
), pp. 3451–3455.
24.
Kamkird
,
P.
,
Ketjoy
,
N.
,
Rakwichian
,
W.
, and
Sukchai
,
S.
, “
Investigation on temperature coefficients of three types photovoltaic module technologies under Thailand operating condition
,”
Procedia Eng.
32
,
376
383
(
2012
).
25.
Karamirad
,
M.
,
Omid
,
M.
,
Alimardani
,
R.
,
Mousazadeh
,
H.
, and
Heidari
,
S. N.
, “
ANN based simulation and experimental verification of analytical four- and five-parameters models of PV modules
,”
Simul. Model. Pract. Theory
34
,
86
98
(
2013
).
26.
Karsoliya
,
S.
, “
Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture
,”
Int. J. Eng. Trends Technol.
3
,
713
717
(
2012
).
27.
Kurnik
,
J.
,
Jankovec
,
M.
,
Brecl
,
K.
, and
Topic
,
M.
, “
Outdoor testing of PV module temperature and performance under different mounting and operational conditions
,”
Sol. Energy Mater. Sol. Cells
95
,
373
376
(
2011
).
28.
Ma
,
T.
,
Yang
,
H.
, and
Lu
,
L.
, “
Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays
,”
Sol. Energy
100
,
31
41
(
2014
).
29.
Makrides
,
G.
,
Zinsser
,
B.
,
Georghiou
,
G. E.
,
Schubert
,
M.
, and
Werner
,
J. H.
, “
Temperature behaviour of different photovoltaic systems installed in Cyprus and Germany
,”
Sol. Energy Mater. Sol. Cells
93
,
1095
1099
(
2009
).
30.
Makrides
,
G.
,
Zinsser
,
B.
,
Georghiou
,
G. E.
,
Schubert
,
M.
, and
Werner
,
J. H.
, “
Outdoor efficiency of different photovoltaic systems installed in Cyprus and Germany
,” in 33rd IEEE
Photovoltaic Specialists Conference, 2008
. PVSC'08, IEEE (
2008
), pp.
1
6
.
31.
McMahon
,
T. J.
,
Basso
,
T. S.
, and
Rummel
,
S. R.
, “
Cell shunt resistance and photovoltaic module performance
,” in
Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference, 1996,
IEEE (
1996
), pp.
1291
1294
.
32.
Mellit
,
A.
,
Sağlam
,
S.
, and
Kalogirou
,
S. A.
, “
Artificial neural network-based model for estimating the produced power of a photovoltaic module
,”
Renewable Energy
60
,
71
78
(
2013
).
33.
Merten
,
J.
,
Sicot
,
L.
,
Delesse
,
Y.
, and
de Montgareuil
,
A. G.
, “
Outdoor evaluation of the energy production of different module technologies
,” in
Proceeding of the 23rd European Photovoltaic Solar Energy Conference Exhibition
(
2008
), pp.
2841
2845
.
34.
Merten
,
J.
,
Sicot
,
L.
,
Delesse
,
Y.
,
Martin
,
J.-L.
,
Mezzasalma
,
F.
, and
Guérin de Montgareuil
,
A.
, “
In situ monitoring of degradation processes inside PV modules of different technologies
,” in
24th European Photovoltaic Solar Energy Conference
, 21–25 September 2009, Hamburg, Germany (
2009
), pp.
3490
3493
.
35.
Merten
,
J.
,
Sicot
,
L.
,
Delesse
,
Y.
, and
Montgareuil
,
A. G.
, “
Outdoor evaluation of the energy production of different module technologies
,” in
Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Eds2008
(
2008
).
36.
Mosalam Shaltout
,
M. A.
,
El-Hadad
,
A. A.
,
Fadly
,
M. A.
,
Hassan
,
A. F.
, and
Mahrous
,
A. M.
, “
Determination of suitable types of solar cells for optimal outdoor performance in desert climate
,”
Renewable Energy
19
,
71
74
(
2000
).
37.
Ndiaye
,
A.
,
Kébé
,
C. M. F.
,
Charki
,
A.
,
Ndiaye
,
P. A.
,
Sambou
,
V.
, and
Kobi
,
A.
, “
Degradation evaluation of crystalline-silicon photovoltaic modules after a few operation years in a tropical environment
,”
Sol. Energy
103
,
70
77
(
2014
).
38.
Phinikarides
,
A.
,
Kindyni
,
N.
,
Makrides
,
G.
, and
Georghiou
,
G. E.
, “
Review of photovoltaic degradation rate methodologies
,”
Renewable Sustainable Energy Rev.
40
,
143
152
(
2014
).
39.
Piliougine
,
M.
,
Carretero
,
J.
,
Mora-López
,
L.
, and
Sidrach-de-Cardona
,
M.
, “
Experimental system for current-voltage curve measurement of photovoltaic modules under outdoor conditions
,”
Prog. Photovoltaics Res. Appl.
19
,
591
602
(
2011
).
40.
Rüther
,
R.
,
Kleiss
,
G.
, and
Reiche
,
K.
, “
Spectral effects on amorphous silicon solar module fill factors
,”
Sol. Energy Mater. Sol. Cells
71
,
375
385
(
2002
).
41.
Sharma
,
V.
,
Kumar
,
A.
,
Sastry
,
O. S.
, and
Chandel
,
S. S.
, “
Performance assessment of different solar photovoltaic technologies under similar outdoor conditions
,”
Energy
58
,
511
518
(
2013
).
42.
Sicot
,
L.
,
Razongles
,
G.
,
Merten
,
J.
,
Mezzasalma
,
F.
,
Martin
,
J.-L.
,
Favre
,
W.
,
Delesse
,
Y.
, and
Guérin de Montgareuil
,
A.
, “
From watt-peak to watt-hours: MotherPV method and IEC 61853 standard
,” in
28th European Photovoltaic Solar Energy Conference Exhibition
(
2013
), pp.
2935
2938
.
43.
Skoplaki
,
E.
and
Palyvos
,
J. A.
, “
On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations
,”
Sol. Energy
83
,
614
624
(
2009
).
44.
Tossa
,
A. K.
,
Soro
,
Y. M.
,
Azoumah
,
Y.
, and
Yamegueu
,
D.
, “
A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions
,”
Sol. Energy
110
,
543
560
(
2014
).
45.
Tossa
,
A. K.
,
Soro
,
Y. M.
,
Thiaw
,
L.
,
Azoumah
,
Y.
,
Sicot
,
L.
,
Yamegueu
,
D.
,
Lishou
,
C.
,
Coulibaly
,
Y.
, and
Razongles
,
G.
, “
Energy performance of different silicon photovoltaic technologies under hot and harsh climate,” Energy
,
103
,
261
270
(
2016
).
46.
Van Dyk
,
E. E.
and
Meyer
,
E. L.
, “
Analysis of the effect of parasitic resistances on the performance of photovoltaic modules
,”
Renewable Energy
29
,
333
344
(
2004
).
47.
Velilla
,
E.
,
Valencia
,
J.
, and
Jaramillo
,
F.
, “
Performance evaluation of two solar photovoltaic technologies under atmospheric exposure using artificial neural network models
,”
Sol. Energy
107
,
260
271
(
2014
).
48.
World Nuclear Association
, http://www.world-nuclear.org/information-library/energy-and-the-environment/renewable-energy-and-electricity.aspx for “Renewable Energy and Electricity” (accessed 3.2.
2017
).
49.
Yap
,
W. K.
and
Karri
,
V.
, “
An off-grid hybrid PV/diesel model as a planning and design tool, incorporating dynamic and ANN modelling techniques
,”
Renewable Energy
78
,
42
50
(
2015
).
You do not currently have access to this content.