Amphiphilic peptides can interact with biological membranes and severely affect their barrier and signaling functions. These peptides, including antimicrobial peptides, can self-assemble into transmembrane pores that cause cell death. Despite their medical importance, the conditions required for pore formation remain elusive. Monte Carlo simulations with coarse-grained models enabled us to calculate the free energies of pore opening under various conditions. In agreement with oriented circular dichroism experiments, a high peptide-to-lipid ratio was found to be necessary for spontaneous pore assembly. The peptide length has a non-monotonic impact on pore formation, and the optimal length matches with the membrane thickness. Furthermore, the hydrophobicity of the peptide ends and the mutual positions of peptides on the membrane play a role.

1.
M.
Zasloff
, “
Antimicrobial peptides of multicellular organisms
,”
Nature
415
,
389
395
(
2002
).
2.
H.
Badani
,
R. F.
Garry
, and
W. C.
Wimley
, “
Peptide entry inhibitors of enveloped viruses: The importance of interfacial hydrophobicity
,”
Biochim. Biophys. Acta, Biomembr.
1838
,
2180
2197
(
2014
).
3.
S. M.
Butterfield
and
H. A.
Lashuel
, “
Amyloidogenic protein-membrane interactions: Mechanistic insight from model systems
,”
Angew. Chem., Int. Ed.
49
,
5628
5654
(
2010
).
4.
G.
Fuertes
,
D.
Giménez
,
S.
Esteban-Martín
,
O. L.
Sánchez-Muñoz
, and
J.
Salgado
, “
A lipocentric view of peptide-induced pores
,”
Eur. Biophys. J.
40
,
399
415
(
2011
).
5.
W. C.
Wimley
, “
Describing the mechanism of antimicrobial peptide action with the interfacial activity model
,”
ACS Chem. Biol.
5
,
905
917
(
2010
).
6.
W. C.
Wimley
and
K.
Hristova
, “
Antimicrobial peptides: Successes, challenges and unanswered questions
,”
J. Membr. Biol.
239
,
27
34
(
2011
).
7.
W. C.
Wimley
and
S. H.
White
, “
Experimentally determined hydrophobicity scale for proteins at membrane interfaces
,”
Nat. Struct. Mol. Biol.
3
,
842
848
(
1996
).
8.
W. C.
Wimley
,
K.
Hristova
,
A. S.
Ladokhin
,
L.
Silvestro
,
P. H.
Axelsen
, and
S. H.
White
, “
Folding of β-sheet membrane proteins: A hydrophobic hexapeptide model
,”
J. Mol. Biol.
277
,
1091
1110
(
1998
).
9.
S. H.
White
and
W. C.
Wimley
, “
Membrane protein folding and stability: Physical principles
,”
Annu. Rev. Biophys. Biomol. Struct.
28
,
319
365
(
1999
).
10.
H.
Leontiadou
,
A. E.
Mark
, and
S. J.
Marrink
, “
Antimicrobial peptides in action
,”
J. Am. Chem. Soc.
128
,
12156
12161
(
2006
).
11.
G.
Illya
and
M.
Deserno
, “
Coarse-grained simulation studies of peptide-induced pore formation
,”
Biophys. J.
95
,
4163
4173
(
2008
).
12.
D.
Sengupta
,
H.
Leontiadou
,
A. E.
Mark
, and
S.-J.
Marrink
, “
Toroidal pores formed by antimicrobial peptides show significant disorder
,”
Biochim. Biophys. Acta, Biomembr.
1778
,
2308
2317
(
2008
).
13.
J.
Dittmer
,
L.
Thøgersen
,
J.
Underhaug
,
K.
Bertelsen
,
T.
Vosegaard
,
J. M.
Pedersen
,
B.
Schiøtt
,
E.
Tajkhorshid
,
T.
Skrydstrup
, and
N. C.
Nielsen
, “
Incorporation of antimicrobial peptides into membranes: A combined liquid-state NMR and molecular dynamics study of alamethicin in DMPC/DHPC bicelles
,”
J. Phys. Chem. B
113
,
6928
6937
(
2009
).
14.
S.
Marrink
,
A.
de Vries
, and
D.
Tieleman
, “
Lipids on the move: Simulations of membrane pores, domains, stalks and curves
,”
Biochim. Biophys. Acta, Biomembr.
1788
,
149
168
(
2009
).
15.
A. J.
Rzepiela
,
D.
Sengupta
,
N.
Goga
, and
S. J.
Marrink
, “
Membrane poration by antimicrobial peptides combining atomistic and coarse-grained descriptions
,”
Faraday Discuss.
144
,
431
(
2010
).
16.
B.
Strodel
,
J. W. L.
Lee
,
C. S.
Whittleston
, and
D. J.
Wales
, “
Transmembrane structures for Alzheimer’s Aβ1−42 oligomers
,”
J. Am. Chem. Soc.
132
,
13300
13312
(
2010
).
17.
A. D.
Cirac
,
G.
Moiset
,
J. T.
Mika
,
A.
Koçer
,
P.
Salvador
,
B.
Poolman
,
S. J.
Marrink
, and
D.
Sengupta
, “
The molecular basis for antimicrobial activity of pore-forming cyclic peptides
,”
Biophys. J.
100
,
2422
2431
(
2011
).
18.
R.
Vácha
and
D.
Frenkel
, “
Simulations suggest possible novel membrane pore structure
,”
Langmuir
30
,
1304
1310
(
2013
).
19.
R.
Vácha
and
D.
Frenkel
, “
Relation between molecular shape and the morphology of self-assembling aggregates: A simulation study
,”
Biophys. J.
101
,
1432
1439
(
2011
).
20.
I. R.
Cooke
and
M.
Deserno
, “
Solvent-free model for self-assembling fluid bilayer membranes: Stabilization of the fluid phase based on broad attractive tail potentials
,”
J. Chem. Phys.
123
,
224710
(
2005
).
21.
I. R.
Cooke
,
K.
Kremer
, and
M.
Deserno
, “
Tunable generic model for fluid bilayer membranes
,”
Phys. Rev. E
72
,
011506
(
2005
).
22.
F.
Wang
and
D.
Landau
, “
Efficient, multiple-range random walk algorithm to calculate the density of states
,”
Phys. Rev. Lett.
86
,
2050
2053
(
2001
).
23.
Z.-J.
Wang
and
D.
Frenkel
, “
Pore nucleation in mechanically stretched bilayer membranes
,”
J. Chem. Phys.
123
,
154701
(
2005
).
24.
D. V.
Zhelev
and
D.
Needham
, “
Tension-stabilized pores in giant vesicles: Determination of pore size and pore line tension
,”
Biochim. Biophys. Acta, Biomembr.
1147
,
89
104
(
1993
).
25.
E.
Evans
, “
Dynamic tension spectroscopy and strength of biomembranes
,”
Biophys. J.
85
,
2342
2350
(
2003
).
26.
L.
Yang
,
T. A.
Harroun
,
T. M.
Weiss
,
L.
Ding
, and
H. W.
Huang
, “
Barrel-stave model or toroidal model? A case study on melittin pores
,”
Biophys. J.
81
,
1475
1485
(
2001
).
27.
K.
He
,
S.
Ludtke
,
W.
Heller
, and
H.
Huang
, “
Mechanism of alamethicin insertion into lipid bilayers
,”
Biophys. J.
71
,
2669
2679
(
1996
).
28.
M.-T.
Lee
,
W.-C.
Hung
,
F.-Y.
Chen
, and
H. W.
Huang
, “
Many-body effect of antimicrobial peptides: On the correlation between lipid’s spontaneous curvature and pore formation
,”
Biophys. J.
89
,
4006
4016
(
2005
).
29.
M.-T.
Lee
,
T.-L.
Sun
,
W.-C.
Hung
, and
H. W.
Huang
, “
Process of inducing pores in membranes by melittin
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
14243
14248
(
2013
).
30.
Z.
Wang
and
G.
Wang
, “
APD: The antimicrobial peptide database
,”
Nucleic Acids Res.
32
,
D590
D592
(
2004
).
You do not currently have access to this content.