Droplet-based microfluidic technologies are powerful tools for applications requiring high-throughput, for example, in biochemistry or material sciences. Several systems have been proposed for the high-throughput production of monodisperse emulsions by parallelizing multiple droplet makers. However, these systems have two main limitations: (1) they allow the use of only a single disperse phase; (2) they are based on multiple layer microfabrication techniques. We present here a pipette-and-play solution offering the possibility of manipulating simultaneously 10 different disperse phases on a single layer device. This system allows high-throughput emulsion production using aqueous flow rates of up to 26 ml/h (>110 000 drops/s) leading to emulsions with user-defined complex chemical composition. We demonstrate the multiplex capabilities of our system by measuring the kinetics of β-galactosidase in droplets using nine different concentrations of a fluorogenic substrate.

1.
T.
Thorsen
,
R. W.
Roberts
,
F. H.
Arnold
, and
S. R.
Quake
, “
Dynamic pattern formation in a vesicle-generating microfluidic device
,”
Phys. Rev. Lett.
86
,
4163
4166
(
2001
).
2.
T. M.
Squires
and
S. R.
Quake
, “
Microfluidics: Fluid physics at the nanoliter scale
,”
Rev. Mod. Phys.
77
,
977
1026
(
2005
).
3.
See the series of papers in the “
Lab on a Chip
” supplement in Nature
442
,
367
418
(
2006
), available at http://www.nature.com/nature/supplements/insights/labonachip/index.html.
4.
B. T.
Kelly
,
J.-C.
Baret
,
V.
Taly
, and
A. D.
Griffiths
, “
Miniaturizing chemistry and biology in microdroplets
,”
Chem. Commun.
2007
,
1773
1788
.
5.
R.
Seemann
,
M.
Brinkmann
,
T.
Pfohl
, and
S.
Herminghaus
, “
Droplet-based microfluidics
,”
Rep. Prog. Phys.
75
,
016601
(
2012
).
6.
M. T.
Guo
,
A.
Rotem
,
J. A.
Heyman
, and
D. A.
Weitz
, “
Droplet microfluidics for high-throughput biological assays
,”
Lab Chip
12
,
2146
2155
(
2012
).
7.
E.
Brouzes
,
M.
Medkova
,
N.
Savenelli
,
D.
Marran
,
M.
Twardowski
,
J. B.
Hutchison
,
J. M.
Rothberg
,
D. R.
Link
,
N.
Perrimon
, and
M. L.
Samuels
, “
Droplet microfluidic technology for single-cell high-throughput screening
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
14195
14200
(
2009
).
8.
J.-C.
Baret
,
O. J.
Miller
,
V.
Taly
,
M.
Ryckelynck
,
A.
El-Harrak
,
L.
Frenz
,
C.
Rick
,
M. L.
Samuels
,
J. B.
Hutchison
,
J. J.
Agresti
 et al, “
Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activity
,”
Lab Chip
9
,
1850
1858
(
2009
).
9.
J.-C.
Baret
,
Y.
Beck
,
I.
Billas-Massobrio
,
D.
Moras
, and
A. D.
Griffiths
, “
Quantitative cell-based reporter gene assays using droplet-based microfluidics
,”
Chem. Biol.
17
,
528
536
(
2010
).
10.
T.
Satoh
,
K.
Kodama
,
S.
Ichikawa
,
S.
Sugiura
, and
T.
Kanamori
, “
Pressure-driven microfluidic device for droplet formation with minimized dead volume
,”
J. Chem. Eng. Jpn.
47
,
841
847
(
2014
).
11.
B. E.
Debs
,
R.
Utharala
,
I. V.
Balyasnikova
,
A. D.
Griffiths
, and
C. A.
Merten
, “
Functional single-cell hybridoma screening using droplet-based microfluidics
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
11570
11575
(
2012
).
12.
S. L.
Sjostrom
,
Y.
Bai
,
M.
Huang
,
Z.
Liu
,
J.
Nielsen
,
H. N.
Joensson
, and
H. A.
Svahn
, “
High-throughput screening for industrial enzyme production hosts by droplet microfluidics
,”
Lab Chip
14
,
806
813
(
2014
).
13.
B. L.
Wang
,
A.
Ghaderi
,
H.
Zhou
,
J.
Agresti
,
D. A.
Weitz
,
G. R.
Fink
, and
G.
Stephanopoulos
, “
Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption
,”
Nat. Biotechnol.
32
,
473
478
(
2014
).
14.
H. N.
Joensson
,
M. L.
Samuels
,
E. R.
Brouzes
,
M.
Medkova
,
M.
Uhlén
,
D. R.
Link
, and
H.
Andersson-Svahn
, “
Detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification in microfluidic droplets
,”
Angew. Chem. Int. Ed.
48
,
2518
2521
(
2009
).
15.
R.
Arayanarakool
,
L.
Shui
,
S. W. M.
Kengen
,
A.
van den Berg
, and
J. C. T.
Eijkel
, “
Single-enzyme analysis in a droplet-based micro- and nanofluidic system
,”
Lab Chip
13
,
1955
1962
(
2013
).
16.
D.
Pekin
,
Y.
Skhiri
,
J.-C.
Baret
,
D. L.
Corre
,
L.
Mazutis
,
C. B.
Salem
,
F.
Millot
,
A. E.
Harrak
,
J. B.
Hutchison
,
J. W.
Larson
 et al, “
Quantitative and sensitive detection of rare mutations using droplet-based microfluidics
,”
Lab Chip
11
,
2156
2166
(
2011
).
17.
J.
Clausell-Tormos
,
A. D.
Griffiths
, and
C. A.
Merten
, “
An automated two-phase microfluidic system for kinetic analyses and the screening of compound libraries
,”
Lab Chip
10
,
1302
1307
(
2010
).
18.
O. J.
Miller
,
A. E.
Harrak
,
T.
Mangeat
,
J.-C.
Baret
,
L.
Frenz
,
B. E.
Debs
,
E.
Mayot
,
M. L.
Samuels
,
E. K.
Rooney
,
P.
Dieu
 et al, “
High-resolution dose-response screening using droplet-based microfluidics
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
378
383
(
2012
).
19.
Q.
Zhong
,
S.
Bhattacharya
,
S.
Kotsopoulos
,
J.
Olson
,
V.
Taly
,
A. D.
Griffiths
,
D. R.
Link
, and
J. W.
Larson
, “
Multiplex digital PCR: Breaking the one target per color barrier of quantitative PCR
,”
Lab Chip
11
,
2167
2174
(
2011
).
20.
V.
Taly
,
D.
Pekin
,
L.
Benhaim
,
S. K.
Kotsopoulos
,
D. L.
Corre
,
X.
Li
,
I.
Atochin
,
D. R.
Link
,
A. D.
Griffiths
,
K.
Pallier
 et al, “
Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients
,”
Clin. Chem.
59
,
1722
1731
(
2013
).
21.
L. B.
Pinheiro
,
V. A.
Coleman
,
C. M.
Hindson
,
J.
Herrmann
,
B. J.
Hindson
,
S.
Bhat
,
K. R.
Emslie
 et al, “
Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification
,”
Anal. Chem.
84
,
1003
1011
(
2012
).
22.
A.
Didelot
,
S. K.
Kotsopoulos
,
A.
Lupo
,
D.
Pekin
,
X.
Li
,
I.
Atochin
,
P.
Srinivasan
,
Q.
Zhong
,
J.
Olson
,
D. R.
Link
 et al, “
Multiplex picoliter-droplet digital PCR for quantitative assessment of DNA integrity in clinical samples
,”
Clin. Chem.
59
,
815
823
(
2013
).
23.
J. J.
Agresti
,
E.
Antipov
,
A. R.
Abate
,
K.
Ahn
,
A. C.
Rowat
,
J.-C.
Baret
,
M.
Marquez
,
A. M.
Klibanov
,
A. D.
Griffiths
, and
D. A.
Weitz
, “
Ultrahigh-throughput screening in drop-based microfluidics for directed evolution
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
4004
4009
(
2010
).
24.
L.
Mazutis
,
J.
Gilbert
,
W. L.
Ung
,
D. A.
Weitz
,
A. D.
Griffiths
, and
J. A.
Heyman
, “
Single-cell analysis and sorting using droplet-based microfluidics
,”
Nat. Protoc.
8
,
870
891
(
2013
).
25.
W. D.
Ristenpart
,
J.
Wan
, and
H. A.
Stone
, “
Enzymatic reactions in microfluidic devices: Michaelis-Menten kinetics
,”
Anal. Chem.
80
,
3270
3276
(
2008
).
26.
K.
Ahn
,
J.
Agresti
,
H.
Chong
,
M.
Marquez
, and
D. A.
Weitz
, “
Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels
,”
Appl. Phys. Lett.
88
,
264105
(
2006
).
27.
U. K.
Shim
,
R. T.
Ranasinghe
,
C. A.
Smith
,
S. M.
Ibrahim
,
F.
Hollfelder
,
W. T. S.
Huck
,
D.
Klenerman
, and
C.
Abell
, “
Ultrarapid generation of femtoliter microfluidic droplets for single-molecule-counting immunoassays
,”
ACS Nano
7
,
5955
5964
(
2013
).
28.
J.
Lim
,
P.
Gruner
,
M.
Konrad
, and
J.-C.
Baret
, “
Micro-optical lens array for fluorescence detection in droplet-based microfluidics
,”
Lab Chip
13
,
1472
1475
(
2013
).
29.
A. R.
Abate
and
D. A.
Weitz
, “
Syringe-vacuum microfluidics: A portable technique to create monodisperse emulsions
,”
Biomicrofluidics
5
,
14107
(
2011
).
30.
W.
Li
,
E. W. K.
Young
,
M.
Seo
,
Z.
Nie
,
P.
Garstecki
,
C. A.
Simmons
, and
E.
Kumacheva
, “
Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators
,”
Soft Matter
4
,
258
262
(
2008
).
31.
T.
Nisisako
and
T.
Torii
, “
Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles
,”
Lab Chip
8
,
287
293
(
2008
).
32.
T.
Nisisako
,
T.
Ando
, and
T.
Hatsuzawa
, “
High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces
,”
Lab Chip
12
,
3426
3435
(
2012
).
33.
M. K.
Mulligan
and
J. P.
Rothstein
, “
Scale-up and control of droplet production in coupled microfluidic flow-focusing geometries
,”
Microfluid. Nanofluid.
13
,
65
73
(
2012
).
34.
D.
Conchouso
,
D.
Castro
,
S. A.
Khan
, and
I. G.
Foulds
, “
Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions
,”
Lab Chip
14
,
3011
3020
(
2014
).
35.
D.
Langbein
,
Capillary Surfaces, Springer Tracts in Modern Physics Series
(
Springer
,
2002
), Vol.
178
.
36.
M.
Brinkmann
, “
Benetzung lateral strukturierter Oberflaechen
,” Ph.D. dissertation,
Potsdam
,
2002
.
37.
J.-C.
Baret
and
M.
Brinkmann
, “
Wettability control of droplet deposition and detachment
,”
Phys. Rev. Lett.
96
,
146106
(
2006
).
38.
M. J.
Fuerstman
,
A.
Lai
,
M. E.
Thurlow
,
S. S.
Shevkoplyas
,
H. A.
Stone
, and
G. M.
Whitesides
, “
The pressure drop along rectangular microchannels containing bubbles
,”
Lab Chip
7
,
1479
1489
(
2007
).
39.
M. T.
Sullivan
and
H. A.
Stone
, “
The role of feedback in microfluidic flow-focusing devices
,”
Philos. Trans. A: Math. Phys. Eng. Sci.
366
,
2131
2143
(
2008
).
40.
Z.
Huang
, “
Kinetic fluorescence measurement of fluorescein di-beta-D-galactoside hydrolysis by beta-galactosidase: Intermediate channeling in stepwise catalysis by a free single enzyme
,”
Biochemistry
30
,
8535
8540
(
1991
).
41.
S.
Sakakihara
,
S.
Araki
,
R.
Iino
, and
H.
Noji
, “
A single-molecule enzymatic assay in a directly accessible femtoliter droplet array
,”
Lab Chip
10
,
3355
3362
(
2010
).
42.
C.
Holtze
,
A. C.
Rowat
,
J. J.
Agresti
,
J. B.
Hutchison
,
F. E.
Angile
,
C. H. J.
Schmitz
,
S.
Koester
,
H.
Duan
,
K. J.
Humphry
,
R. A.
Scanga
 et al, “
Biocompatible surfactants for water-in-fluorocarbon emulsions
,”
Lab Chip
8
,
1632
1639
(
2008
).
43.
T.
D'Orazio
,
C.
Guaragnella
,
M.
Leo
, and
A.
Distante
, “
A new algorithm for ball recognition using circle Hough transform and neural classifier
,”
Pattern Recognit.
37
,
393
408
(
2004
).
44.
H.
Schreier
,
J.-J.
Orteu
, and
M. A.
Sutton
,
Image Correlation for Shape, Motion and Deformation Measurements
(
Springer Science+Business Media
,
2009
).
45.
Y.
Skhiri
,
P.
Gruner
,
S.
Semin
,
Q.
Brosseau
,
D.
Pekin
,
L.
Mazutis
,
V.
Goust
,
F.
Kleinschmidt
,
A. E.
Harrak
,
J.
Hutchison
 et al, “
Dynamics of molecular transport by surfactants in emulsions
,”
Soft Matter
8
,
10618
10627
(
2012
).
46.
See supplementary material at http://dx.doi.org/10.1063/1.4919415 for more details about the methodology and the microfluidic platform.

Supplementary Material

You do not currently have access to this content.