In this article, we present a simple, rapid prototyped polystyrene-based microfluidic device with three-dimensional (3D) interconnected microporous walls for long term perfusion cell culture. Patterned 3D interconnected microporous structures were created by a chemical treatment together with a protective mask and the native hydrophobic nature of the microporous structures were selectively made hydrophilic using oxygen plasma treatment together with a protective mask. Using this polystyrene-based cell culture microfluidic device, we successfully demonstrated the support of four days perfusion cell culture of hepatocytes (C3A cells).

1.
C. Y.
Chan
,
P.-H.
Huang
,
F.
Guo
,
X.
Ding
,
V.
Kapur
,
J. D.
Mai
,
P. K.
Yuen
, and
T. J.
Huang
, “
Accelerating drug discovery via organs-on-chips
,”
Lab Chip
13
,
4697
4710
(
2013
).
2.
I. K.
Zervantonakis
,
C. R.
Kothapalli
,
S.
Chung
,
R.
Sudo
, and
R. D.
Kamm
, “
Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments
,”
Biomicrofluidics
5
,
013406
(
2011
).
3.
M.
Baker
, “
A living system on a chip
,”
Nature
471
,
661
665
(
2011
).
4.
D.
Huh
,
Y.-S.
Torisawa
,
G. A.
Hamilton
,
H. J.
Kim
, and
D. E.
Ingber
, “
Microengineered physiological biomimicry: Organs-on-Chips
,”
Lab Chip
12
,
2156
2164
(
2012
).
5.
D.
Huh
,
G. A.
Hamilton
, and
D. E.
Ingber
, “
From 3D cell culture to organs-on-chips
,”
Trends Cell Biol.
21
,
745
754
(
2011
).
6.
S.-Y. C.
Chen
,
P. J.
Hung
, and
P. J.
Lee
, “
Microfluidic array for three-dimensional perfusion culture of human mammary epithelial cells
,”
Biomed. Microdevices
13
,
753
758
(
2011
).
7.
M. S.
Kim
,
J. H.
Yeon
, and
J.-K.
Park
, “
A microfluidic platform for 3-dimensional cell culture and cell-based assays
,”
Biomed. Microdevices
9
,
25
34
(
2007
).
8.
P. J.
Hung
,
P. J.
Lee
,
P.
Sabounchi
,
N.
Aghdam
,
R.
Lin
, and
L. P.
Lee
, “
A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array
,”
Lab Chip
5
,
44
48
(
2005
).
9.
D.
Choudhury
,
X.
Mo
,
C.
Iliescu
,
L. L.
Tan
,
W. H.
Tong
, and
H.
Yu
, “
Exploitation of physical and chemical constraints for three-dimensional microtissue construction in microfluidics
,”
Biomicrofluidics
5
,
022203
(
2011
).
10.
Y.
Nakao
,
H.
Kimura
,
Y.
Sakai
, and
T.
Fujii
, “
Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device
,”
Biomicrofluidics
5
,
022212
(
2011
).
11.
V. N.
Goral
,
Y. C.
Hsieh
,
O. N.
Petzold
,
J. S.
Clark
,
P. K.
Yuen
, and
R. A.
Faris
, “
Perfusion-based microfluidic device for three-dimensional dynamic primary human hepatocyte cell culture in the absence of biological or synthetic matrices or coagulants
,”
Lab Chip
10
,
3380
3386
(
2010
).
12.
Y. C.
Toh
,
T. C.
Lim
,
D.
Tai
,
G. F.
Xiao
,
D.
van Noort
, and
H.
Yu
, “
A microfluidic 3D hepatocyte chip for drug toxicity testing
,”
Lab Chip
9
,
2026
2035
(
2009
).
13.
S.-M.
Ong
,
C.
Zhang
,
Y.-C.
Toh
,
S. H.
Kim
,
H. L.
Foo
,
C. H.
Tan
,
D.
van Noort
,
S.
Park
, and
H.
Yu
, “
A gel-free 3D microfluidic cell culture system
,”
Biomaterials
29
,
3237
3244
(
2008
).
14.
Y.-C.
Toh
,
C.
Zhang
,
J.
Zhang
,
Y. M.
Khong
,
S.
Chang
,
V. D.
Samper
,
D.
van Noort
,
D. W.
Hutmacher
, and
H.
Yu
, “
A novel 3D mammalian cell perfusion-culture system in microfluidic channels
,”
Lab Chip
7
,
302
309
(
2007
).
15.
P. J.
Lee
,
P. J.
Hung
, and
L. P.
Lee
, “
An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture
,”
Biotechnol. Bioeng.
97
,
1340
1346
(
2007
).
16.
I.
Wong
and
C. M.
Ho
, “
Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices
,”
Microfluid. Nanofluid.
7
,
291
306
(
2009
).
17.
E.
Berthier
,
E. W. K.
Young
, and
D.
Beebe
, “
Engineers are from PDMS-land, biologists are from polystyrenia
,”
Lab Chip
12
,
1224
1237
(
2012
).
18.
P. K.
Yuen
and
M. E.
DeRosa
, “
Flexible microfluidic devices with three-dimensional interconnected microporous walls for gas and liquid applications
,”
Lab Chip
11
,
3249
3255
(
2011
).
19.
P. K.
Yuen
and
V. N.
Goral
, “
Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter
,”
Lab Chip
10
,
384
387
(
2010
).
You do not currently have access to this content.