We study the influence of the surrounding gas in the dynamics of drop impact on a smooth surface. We use an axisymmetric model for which both the gas and the liquid are incompressible; lubrication regime applies for the gas film dynamics and the liquid viscosity is neglected. In the absence of surface tension a finite time singularity whose properties are analysed is formed and the liquid touches the solid on a circle. When surface tension is taken into account, a thin jet emerges from the zone of impact, skating above a thin gas layer. The thickness of the air film underneath this jet is always smaller than the mean free path in the gas suggesting that the liquid film eventually wets the surface. We finally suggest an aerodynamical instability mechanism for the splash.

1.
M.
Rein
, “
Phenomena of liquid drop impact on solid and liquid surfaces
,”
Fluid Dyn. Res.
12
,
61
(
1993
).
2.
M.
Coantic
, “
Mass transfert across the ocean-air interface: small scale hydrodynamic and aerodynamic mechanisms
,”
PhysicoChem. Hydrodyn.
1
,
249
(
1980
).
3.
R.
Rioboo
,
M.
Marengo
, and
C.
Tropea
, “
Outcomes from a drop impact on solid surfaces
,”
Atomization Sprays
11
,
155
(
2001
).
4.
K.
Range
and
F.
Feuillebois
, “
Influence of surface roughness on liquid drop impact
,”
J. Colloid Interface Sci.
203
,
16
(
1998
).
5.
C.
Josserand
,
L.
Lemoyne
,
R.
Troeger
, and
S.
Zaleski
, “
Droplet impact on a dry surface: triggering the splash with a small obstacle
,”
J. Fluid Mech.
524
,
47
(
2005
).
6.
L.
Xu
,
L.
Barcos
, and
S. R.
Nagel
, “
Splashing of liquids: Interplay of surface roughness with surrounding gas
,”
Phys. Rev. E
76
,
066311
(
2007
).
7.
L.
Xu
,
W.W.
Zhang
, and
S.R.
Nagel
, “
Drop splashing on a dry smooth surface
,”
Phys. Rev. Lett.
94
,
184505
(
2005
).
8.
S.
Mandre
,
M.
Mani
, and
M. P.
Brenner
, “
Precursors to splashing of liquid droplets on a solid surface
,”
Phys. Rev. Lett.
102
,
134502
(
2009
).
9.
P. D.
Hicks
and
R.
Purvis
, “
Air cushioning and bubble entrapment in three-dimensional droplet impacts
,”
J. Fluid Mech.
649
,
135
(
2010
).
10.
F. T.
Smith
,
L.
Li
, and
G. X.
Wu
, “
Air cushioning with a lubrication/inviscid balance
,”
J. Fluid Mech.
482
,
291
(
2003
).
11.
A. A.
Korobkin
,
A. S.
Ellis
, and
F. T.
Smith
, “
Trapping of air in impact between a body and shallow water
,”
J. Fluid Mech.
611
,
365
(
2008
).
12.
M.
Mani
,
S.
Mandre
, and
M. P.
Brenner
, “
Events before droplet splashing on a solid surface
,”
J. Fluid Mech.
647
,
163
(
2010
).
13.
J. R.
Lister
,
A. B.
Thompson
,
A.
Perriot
, and
L.
Duchemin
, “
Shape and stability of axisymmetric levitated viscous drops
,”
J. Fluid Mech.
617
,
167
(
2008
).
14.
J.
Eggers
, “
Nonlinear dynamics and breakup of free-surface flows
,”
Rev. Mod. Phys.
69
,
865
(
1997
).
15.
C.
Clanet
,
C.
Béguin
,
D.
Richard
, and
D.
Quéré
, “
Maximal deformation of an impacting drop
,”
J. Fluid Mech.
517
,
199
(
2004
).
16.
C.
Josserand
and
S.
Zaleski
, “
Droplet splashing on a thin liquid film
,”
Phys. Fluids
15
,
1650
(
2003
).
17.
K.
Yokoi
, “
Numerical studies of droplet splashing on a dry surface: triggering a splash with the dynamic contact angle
,”
Soft Matter
7
,
5120
(
2011
).
18.
A.
Mongruel
,
V.
Daru
,
F.
Feuillebois
, and
S.
Tabakova
, “
Early post-impact time dynamics of viscous drops onto a solid dry surface
,”
Phys. Fluids
21
,
032101
(
2009
).
You do not currently have access to this content.