Aluminum‐doped zinc oxide films have been deposited on soda lime glass substrates from diethyl zinc, triethyl aluminum, and ethanol by atmospheric pressure chemical‐vapor deposition in the temperature range 367–444 °C. Film roughness was controlled by the deposition temperature and the dopant concentration. The films have resistivities as low as 3.0 × 10−4 Ω cm, infrared reflectances close to 90%, visible transmissions of 85%, and visible absorptions of 5.0% for a sheet resistance of 4.0 Ω/⧠. The aluminum concentration within doped films measured by electron microprobe is between 0.3 and 1.2 at. %. The electron concentration determined from Hall coefficient measurements is between 2.0 × 1020 and 8.0 × 1020 cm−3, which is in agreement with the estimates from the plasma wavelength. The Hall mobility, obtained from the measured Hall coefficient and dc resistivity, is between 10.0 and 35.0 cm2/V s. Over 90% of the aluminum atoms in the film are electrically active as electron donors. Scanning electron microscopy and x‐ray diffraction show that the films are crystalline with disklike structures of diameter 100–1000 nm and height 30–60 nm. The films have the desired electrical and optical properties for applications in solar cell technology and energy efficient windows.

1.
Z.-C.
Jin
,
I.
Hamberg
, and
C. G.
Granqvist
,
J. Appl. Phys.
64
,
5117
(
1988
).
2.
J.-B.
Yoo
,
A. L.
Fahrenbruch
, and
R. H.
Bube
,
J. Appl. Phys.
68
,
4694
(
1990
).
3.
C. K.
Lau
,
S. K.
Tiku
, and
K. M.
Lakin
,
J. Electrochem. Soc.
127
,
1843
(
1980
).
4.
M. J.
Vellekoop
,
A.
Venema
,
C. C. G.
Visser
, and
P. M.
Sarro
,
Ceramic Bull.
69
,
1503
(
1990
).
5.
R.
Banerjee
,
S.
Ray
,
N.
Basu
,
A. K.
Batabyal
, and
A. K.
Barua
,
J. Appl. Phys.
62
,
912
(
1987
).
6.
A. F.
Aktaruzzaman
,
G. L.
Sharma
, and
L. K.
Malhotra
,
Thin Solid Films
198
,
67
(
1991
).
7.
D. R. Lide, Handbook of Chemistry and Physics, 71st ed. (CRC, Boca Raton, FL, 1991).
8.
J.
Hu
and
R. G.
Gordon
,
Sol. Cells
30
,
437
(
1991
).
9.
P. S. Vijayakumar, K. A. Blaker, R. D. Wieting, B. Wong, A. T. Halani, and C. Park, U.S. Patent No. 4,751,149 (1988).
10.
T.
Minami
,
H.
Nanto
, and
S.
Takata
,
Jpn. J. Appl. Phys.
23
,
L280
(
1984
).
11.
B. H.
Choi
,
H. B.
Im
,
J. S.
Song
, and
K. H.
Yoon
,
Thin Solid Films
194
,
712
(
1991
).
12.
S. N.
Qiu
,
C. X.
Qiu
, and
I.
Shih
,
Sol. Energy Mater.
15
,
261
(
1987
).
13.
S.
Oda
,
H.
Tokunaga
,
N.
Kitajima
,
J.
Hanna
,
I.
Shimizu
, and
H.
Kokado
,
Jpn. J. Appl. Phys.
24
,
1607
(
1985
).
14.
J.
Hu
and
R. G.
Gordon
,
Mater. Res. Soc. Symp. Proc.
202
,
457
(
1991
).
15.
F. T. J.
Smith
,
Appl. Phys. Lett.
43
,
1108
(
1983
).
16.
J. W. Proscia., Ph.D. thesis, Harvard University, 1988.
17.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge, New York, 1986).
18.
B. D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978).
19.
I.
Hamberg
and
C. G.
Granqvist
,
J. Appl. Phys.
60
,
R123
(
1986
).
20.
J. Hu and R. G. Gordon (unpublished).
21.
R. E. I.
Schropp
and
A.
Madan
,
J. Appl. Phys.
66
,
2027
(
1989
).
22.
R. G.
Gordon
,
J. W.
Proscia
,
G. B.
Ellis
, Jr.
, and
A. E.
Delahoy
,
Sol. Energy Mater.
18
,
263
(
1989
).
23.
H. E.
Bennett
and
J. O.
Porteus
,
J. Opt. Soc. Am.
51
,
123
(
1961
).
This content is only available via PDF.
You do not currently have access to this content.