In this study we have introduced a formulation of time-dependent density functional theory (TDDFT) based on a noncollinear exchange-correlation potential. This formulation is a generalization of conventional TDDFT. The form of this formulation is exactly the same as that of the conventional TDDFT for the excitation energies of transitions that do not involve spin flips. In addition, this noncollinear TDDFT formulation allows for spin-flip transitions. This feature makes it possible to resolve more fully excited state spin multiplets, while for closed-shell systems, the spin-flip transitions will result in singlet-triplet excitations and this excitation energy calculated from this formulation of TDDFT is exactly the same as that from ordinary TDDFT. This formulation is applied to the dissociation of H2 in its Σg+1 ground state and Σu+1 and Σu-3 excited states with Σu-3(Ms=+1) as the reference state and the multiplets splitting of some atoms.

1.
E. K. U.
Gross
and
W.
Kohn
,
Adv. Quantum Chem.
21
,
255
(
1990
).
2.
M. E. Casida, in Recent Advances in Density Functional Methods, edited by D. P. Chong (World Scientific, Singapore, 1995), Vol. I, p. 155.
3.
R.
Bauernschmitt
and
R.
Ahlrichs
,
Chem. Phys. Lett.
256
,
454
(
1996
).
4.
J. A. van
Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
Comput. Phys. Commun.
118
,
119
(
1999
).
5.
A. I.
Krylov
,
Chem. Phys. Lett.
338
,
375
(
2001
).
6.
A. I.
Krylov
,
Chem. Phys. Lett.
350
,
522
(
2001
).
7.
Y.
Shao
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
118
,
4807
(
2003
).
8.
H.
Eshrig
and
V. D. P.
Servedio
,
J. Comput. Chem.
20
,
23
(
1999
).
9.
C.
van Wüllen
,
J. Comput. Chem.
23
,
779
(
2002
).
10.
F.
Wang
and
W.
Liu
,
J. Chin. Chem. Soc. (Taipei)
50
,
597
(
2003
).
11.
S.
Yamanaka
,
D.
Yamaki
,
Y.
Shigeta
,
H.
Nagao
,
Y.
Yoshioka
,
N.
Suzuki
, and
K.
Yamaguchi
,
Int. J. Quantum Chem.
80
,
664
(
2000
).
12.
S.
Yamanaka
,
D.
Yamaki
,
Y.
Shigeta
,
H.
Nagao
, and
K.
Yamaguchi
,
Int. J. Quantum Chem.
84
,
670
(
2001
).
13.
P. Jørgensen and J. Simons, Second Quantization Based Methods in Quantum Chemistry (Academic, New York, 1981).
14.
F.
Furche
,
J. Chem. Phys.
114
,
5982
(
2001
).
15.
E. J.
Baerends
,
Phys. Rev. Lett.
87
,
133004
(
2001
).
16.
M.
Grüning
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
J. Chem. Phys.
118
,
7183
(
2003
).
17.
Z.
Cai
and
J. R.
Reimers
,
J. Chem. Phys.
112
,
527
(
2000
).
18.
M. E.
Casida
,
F.
Gutierrez
,
J.
Guan
,
F.
Gadea
,
D.
Salahub
, and
J.
Daudey
,
J. Chem. Phys.
113
,
7062
(
2000
).
19.
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
,
A.
Görling
, and
E. J.
Baerends
,
J. Chem. Phys.
113
,
8478
(
2000
).
20.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
314
,
291
(
1999
).
21.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerend
,
C. Fonseca
Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
22.
W.
Kolost
and
L.
Wolniewicz
,
J. Chem. Phys.
43
,
2429
(
1965
).
23.
W.
Kolost
and
L.
Wolniewicz
,
J. Chem. Phys.
45
,
509
(
1966
).
24.
R.
van Leeuwen
and
E. J.
Baerends
,
Phys. Rev. A
49
,
2421
(
1994
).
25.
C. E. Moore, Atomic Energy Levels, Nat. Bur. Stand. (U. S.) Circ. No. 467, (U. S. GPO, Washington, D.C., 1949), Vol. 1.
This content is only available via PDF.
You do not currently have access to this content.