We show that covariant field theory for sections of π : E→M lifts in a natural way to the bundle of vertically adapted linear frames LπE. Our analysis is based on the fact that LπE is a principal fiber bundle over the bundle of 1-jets J1π. On LπE the canonical soldering 1-forms play the role of the contact structure of J1π. A lifted Lagrangian ℒ: LπE→R is used to construct modified soldering 1-forms, which we refer to as the Cartan–Hamilton–Poincaré 1-forms. These 1-forms on LπE pass to the quotient to define the standard Cartan–Hamilton–Poincaré m-form on J1π. We derive generalized Hamilton–Jacobi and Hamilton equations on LπE, and show that the Hamilton–Jacobi and canonical equations of Carathéodory–Rund and de Donder–Weyl are obtained as special cases.

1.
D. J. Saunders, The Geometry of Jet Bundles (Cambridge University Press, Cambridge, 1989).
2.
R. O.
Fulp
,
J. K.
Lawson
, and
L. K.
Norris
, “
Geometric prequantization on the spin bundle based on n-symplectic geometry: The Dirac equation
,”
Int. J. Theor. Phys.
33
,
1011
1028
(
1994
).
3.
R. O.
Fulp
,
J. K.
Lawson
, and
L. K.
Norris
, “
Generalized symplectic geometry as a covering theory for the Hamiltonian theories of classical particles and fields
,”
J. Geom. Phys.
20
,
195
206
(
1996
).
4.
L. K. Norris, “Generalized symplectic geometry on the frame bundle of a manifold,” Lecture given at the AMS Summer Research Institute on Differential Geometry, 1990, at U.C.L.A.
5.
L. K. Norris, “Generalized symplectic geometry on the frame bundle of a manifold,” Proceedings of the Symposium on Pure Mathematics54, Part 2 (American Mathematical Society, Providence, RI, 1993), pp. 435–465.
6.
L. K.
Norris
, “
Symplectic geometry on T*M derived from n-symplectic geometry on LM,
J. Geom. Phys.
13
,
51
78
(
1994
).
7.
L. K.
Norris
, “
Schouten-Nijenhuis Brackets
,”
J. Math. Phys.
38
,
2694
2709
(
1997
).
8.
J. K. Lawson, Ph.D. dissertation, Department of Mathematics, North Carolina State University, Raleigh, 1994.
9.
M. Gotay, J. Isenberg, and J. Marsden (unpublished).
10.
M. Gotay, J. Isenberg, and J. E. Marsden (unpublished).
11.
T. de Donder, Théorie invariantive du calcul des variations, nouvelle édit. (Gauthier-Villars, Paris, 1935);
H.
Weyl
, “
Geodesic fields in the calculus of variations for multiple integrals
,”
Ann. Math.
36
,
607
629
(
1935
).
12.
H. Rund, The Hamilton-Jacobi Theory in the Calculus of Variations, Reprinted Edition (Robert E. Krieger, Huntington, New York, 1973).
13.
C.
Carathéodory
, “
Über die Variationsrechnung bei mehrfachen Integralen
,”
Acta Szeged Sect. Scient. Mathem.
4
,
193
216
(
1929
).
14.
M.
de León
,
E.
Merino
,
J.
Oubiña
,
P.
Rodrigues
, and
M.
Salgado
, “
Hamiltonian systems on k-cosymplectic manifolds
,”
J. Math. Phys.
39
,
876
893
(
1997
);
M. de León, E. Merino, and M. Salgado, “k-Cosymplectic manifolds and Lagrangian field theory,” preprint;
M.
de León
,
J.
Oubiña
, and
M.
Salgado
, “
Integrable almost s-tangent structures
,”
Rendiconti di Matemiatica, Serie VII
14
,
609
623
(
1994
).
15.
A.
Awane
, “
k-symplectic Structures
,”
J. Math. Phys.
33
,
4046
4052
(
1992
);
“Structures k-symplectiques,” Doctoral dissertation, Mulhouse, 1992.
16.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I (Wiley, New York, 1963).
17.
V. Guillemin and S. Sternberg, Geometric Asymptotics, Math. Surv. 14 (American Mathematical Society, Providence, 1977).
18.
N. Woodhouse, Geometric Quantization, 2nd ed. (Oxford, Oxford, 1992).
This content is only available via PDF.
You do not currently have access to this content.