We report on the study of atomically sharp superconducting tips for scanning tunneling microscopy and spectroscopy. The results clearly show vacuum tunneling of superconducting quasiparticles from atomically sharp tips. Observed deviations of the energy gap of the superconducting tip from its bulk value are attributed to the proximity effect. We show that a combination of a superconducting tip and an atomic resolution scanning tunneling microscope provides a means of achieving very high resolution local spectroscopy. We also discuss how this combination paves the way for a number of important applications.

1.
A. L.
de Lozanne
,
S. A.
Elrod
, and
C. F.
Quate
,
Phys. Rev. Lett.
54
,
2433
(
1985
).
2.
J. R.
Kirtley
,
S. I.
Raider
,
R. M.
Feenstra
, and
A. P.
Fein
,
Appl. Phys. Lett.
50
,
1607
(
1987
).
3.
H. F.
Hess
,
R. B.
Robinson
,
R. C.
Dynes
,
J. M.
Valles
, Jr.
, and
J. V.
Waszczak
,
Phys. Rev. Lett.
62
,
214
(
1989
).
4.
J. R.
Kirtley
,
Int. J. Mod. Phys. B
4
,
201
(
1990
).
5.
R.
Meservey
,
Phys. Scr.
38
,
272
(
1988
).
6.
Q.
Chen
,
K.-W.
Ng
,
A. E.
Manzi
, and
H. L.
Luo
,
Phys. Rev. B
49
,
6193
(
1994
).
7.
Y.
DeWilde
,
N.
Miyakawa
,
P.
Guptasarma
,
M.
Iavarone
,
L.
Ozyuzer
,
J. F.
Zasadzinski
,
P.
Romano
,
D. G.
Hinks
,
C.
Kendziora
,
G. W.
Crabtree
, and
K. E.
Gray
,
Phys. Rev. Lett.
80
,
153
(
1998
).
8.
H.
Murakami
,
S.
Ohbuchi
, and
R.
Aoki
,
Physica C
235-240
,
1887
(
1994
).
9.
A.
Yazdani
,
B. A.
Jones
,
C. P.
Lutz
,
M. F.
Crommie
, and
D. M.
Eigler
,
Science
275
,
1767
(
1997
).
10.
S. H. Pan, E. W. Hudson, and J. C. Davis, Rev. Sci. Instr. (to be published).
11.
J. H.
Coombs
and
J. B.
Pethica
,
IBM J. Res. Dev.
30
,
455
(
1986
);
N.
Garcia
,
IBM J. Res. Dev.
30
,
533
(
1986
).
12.
All differential conductance spectra measurements in this experiment were performed using a lock-in technique with a modulation amplitude of 50 μV. The junction resistance was set to 100 MΩ at a bias voltage of 8 mV (well outside the superconducting energy gap).
13.
R. J.
Hamers
,
Annu. Rev. Phys. Chem.
40
,
531
(
1989
).
14.
P.
Townsend
and
J.
Sutton
,
Phys. Rev.
128
,
591
(
1962
).
15.
S.
Guéron
,
H.
Pothier
,
N. O.
Birge
,
D.
Esteve
, and
M. H.
Devoret
,
Phys. Rev. Lett.
77
,
3025
(
1996
).
16.
J. F. Zasadzinski (private communication). One of the signatures of the proximity effect is the appearance of two dips directly outside of the peaks at each side of the gap edge. In SS tunneling this can be seen more clearly because there will be no thermal smearing due to a normal state electrode [as evidenced in Fig. 4(a)]. One can also approximately simulate SS tunneling effects by convoluting a SN tunneling curve with itself. Self-convolutions of both the data in Figs. 1(b) and 2(a) show such dips, whereas the self-convolution of the data in Fig. 4(b) does not. This indicates that the proximity effect is indeed only in the tip.
17.
E. L. Wolf, Principles of Electron Tunneling Spectroscopy, International series of monographs on physics, Vol. 71 (Oxford University Press, New York, 1985), p. 105.
18.
L. Solymar, Superconductive Tunnelling and Applications (Wiley-Interscience, New York, 1972), pp. 112 and 113.
19.
M.
Franz
,
C.
Kallin
,
P. I.
Soininen
,
A. J.
Berlinsky
, and
A. L.
Fetter
,
Phys. Rev. B
53
,
5795
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.