Semin intervent Radiol 2008; 25(2): 092-103
DOI: 10.1055/s-2008-1076679
© Thieme Medical Publishers

Liver Regeneration and the Atrophy-Hypertrophy Complex

Robin D. Kim1 , Jae Sung Kim1 , Go Watanabe1 , Dagmara Mohuczy1 , Kevin E. Behrns1
  • 1Department of Surgery, Division of General and GI Surgery, University of Florida, Gainesville, Florida
Further Information

Publication History

Publication Date:
30 May 2008 (online)

ABSTRACT

The atrophy-hypertrophy complex (AHC) refers to the controlled restoration of liver parenchyma following hepatocyte loss. Different types of injury (e.g., toxins, ischemia/reperfusion, biliary obstruction, and resection) elicit the same hypertrophic response in the remnant liver. The AHC involves complex anatomical, histological, cellular, and molecular processes. The signals responsible for these processes are both intrinsic and extrinsic to the liver and involve both physical and molecular events. In patients in whom resection of large liver malignancies would result in an inadequate functional liver remnant, preoperative portal vein embolization may increase the remnant liver sufficiently to permit aggressive resections. Through continued basic science research, the cellular mechanisms of the AHC may be maximized to permit curative resections in patients with potentially prohibitive liver function.

REFERENCES

  • 1 Bellentani S, Hardison W G, Manenti F. Mechanisms of liver adaptation to prolonged selective biliary obstruction (SBO) in the rat.  J Hepatol. 1985;  1 525-535
  • 2 Schaffner F, Bacchin P G, Hutterer F et al.. Mechanism of cholestasis: 4. Structural and biochemical changes in the liver and serum in rats after bile duct ligation.  Gastroenterology. 1971;  60 888-897
  • 3 Gall J A, Bhathal P S. Origin and involution of hyperplastic bile ductules following total biliary obstruction.  Liver. 1990;  10 106-115
  • 4 Schweizer W, Duda P, Tanner S et al.. Experimental atrophy/hypertrophy complex (AHC) of the liver: portal vein, but not bile duct obstruction, is the main driving force for the development of AHC in the rat.  J Hepatol. 1995;  23 71-78
  • 5 Hann L E, Getrajdman G I, Brown K T et al.. Hepatic lobar atrophy: association with ipsilateral portal vein obstruction.  AJR Am J Roentgenol. 1996;  167 1017-1021
  • 6 Hadjis N S, Adam A, Gibson R, Blenkharn J I, Benjamin I S, Blumgart L H. Nonoperative approach to hilar cancer determined by the atrophy-hypertrophy complex.  Am J Surg. 1989;  157 395-399
  • 7 Hadjis N S, Blumgart L H. Role of liver atrophy, hepatic resection and hepatocyte hyperplasia in the development of portal hypertension in biliary disease.  Gut. 1987;  28 1022-1028
  • 8 Hadjis N S, Adam A, Blenkharn I, Hatzis G, Benjamin I S, Blumgart L H. Primary sclerosing cholangitis associated with liver atrophy.  Am J Surg. 1989;  158 43-47
  • 9 Jeyarajah D R. Recurrent pyogenic cholangitis.  Curr Treat Options Gastroenterol. 2004;  7 91-98
  • 10 Rana S S, Bhasin D K, Nanda M, Singh K. Parasitic infestations of the biliary tract.  Curr Gastroenterol Rep. 2007;  9 156-164
  • 11 Rozanes I, Acunas B, Celik L, Minareci O, Gokmen E. CT in lobar atrophy of the liver caused by alveolar echinococcosis.  J Comput Assist Tomogr. 1992;  16 216-218
  • 12 Karabulut K, Ozden I, Poyanli A et al.. Hepatic atrophy-hypertrophy complex due to Echinococcus granulosus .  J Gastrointest Surg. 2006;  10 407-412
  • 13 Lorigan J G, Charnsangavej C, Carrasco C H, Richli W R, Wallace S. Atrophy with compensatory hypertrophy of the liver in hepatic neoplasms: radiographic findings.  AJR Am J Roentgenol. 1988;  150 1291-1295
  • 14 Bax H R, Mansens B J, Schalm L. Atrophy of the liver after occlusion of the bile ducts or portal vein and compensatory hypertrophy of the unoccluded portion and its clinical importance.  Gastroenterology. 1956;  31 131-155
  • 15 Ishida H, Naganuma H, Konno K et al.. Lobar atrophy of the liver.  Abdom Imaging. 1998;  23 150-153
  • 16 Kusano S, Okada Y, Endo T, Yokoyama H, Ohmiya H, Atari H. Oriental cholangiohepatitis: correlation between portal vein occlusion and hepatic atrophy.  AJR Am J Roentgenol. 1992;  158 1011-1014
  • 17 Vilgrain V, Condat B, Bureau C et al.. Atrophy-hypertrophy complex in patients with cavernous transformation of the portal vein: CT evaluation.  Radiology. 2006;  241 149-155
  • 18 Valla D C. The diagnosis and management of the Budd-Chiari syndrome: consensus and controversies.  Hepatology. 2003;  38 793-803
  • 19 Denninger M H, Chait Y, Casadevall N et al.. Cause of portal or hepatic venous thrombosis in adults: the role of multiple concurrent factors.  Hepatology. 2000;  31 587-591
  • 20 Matthieu D, Kracht M, Zafrani E, Dhumeaux D, Vasile N. Budd-Chiari syndrome. In: Ferrucci J, Matthieu D Advances in Hepatobiliary Radiology. St. Louis; CV Mosby 1990: 3-28
  • 21 Rous P, Larimore L D. Relation of the portal blood flow to liver maintenance: a demonstration of liver atrophy conditional on compensation.  J Exp Med. 1920;  31 609-632
  • 22 Makuuchi M, Thai B L, Takayasu K et al.. Preoperative portal embolization to increase safety of major hepatectomy for hilar bile duct carcinoma: a preliminary report.  Surgery. 1990;  107 521-527
  • 23 Lemasters J J, Ji S, Thurman R G. Centrilobular injury following hypoxia in isolated, perfused rat liver.  Science. 1981;  213(4508) 661-663
  • 24 Jungermann K, Kietzmann T. Oxygen: modulator of metabolic zonation and disease of the liver.  Hepatology. 2000;  31(2) 255-260
  • 25 Kim J-S, He L, Lemasters J J. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis.  Biochem Biophys Res Commun. 2003;  304(3) 463-470
  • 26 Gores G J, Nieminen A L, Wray B E, Herman B, Lemasters J J. Intracellular pH during “chemical hypoxia” in cultured rat hepatocytes: protection by intracellular acidosis against the onset of cell death.  J Clin Invest. 1989;  83(2) 386-396
  • 27 Qian T, Nieminen A L, Herman B, Lemasters J J. Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes.  Am J Physiol. 1997;  273 C1783-C1792
  • 28 Currin R T, Gores G J, Thurman R G, Lemasters J J. Protection by acidotic pH against anoxic cell killing in perfused rat liver: evidence for a pH paradox.  FASEB J. 1991;  5(2) 207-210
  • 29 McCord J M. Oxygen-derived free radicals in postischemic tissue injury.  N Engl J Med. 1985;  312(3) 159-163
  • 30 Kim J S, He L, Qian T, Lemasters J J. Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes.  Curr Mol Med. 2003;  3(6) 527-535
  • 31 Kim J-S, Qian T, Lemasters J J. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes.  Gastroenterology. 2003;  124 494-503
  • 32 Hunter D R, Haworth R A, Southard J H. Relationship between configuration, function, and permeability in calcium-treated mitochondria.  J Biol Chem. 1976;  251(16) 5069-5077
  • 33 Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition.  Physiol Rev. 1999;  79(4) 1127-1155
  • 34 Gunter T E, Pfeiffer D R. Mechanisms by which mitochondria transport calcium.  Am J Physiol. 1990;  258 C755-C786
  • 35 Kim J-S, Jin Y, Lemasters J J. Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia/reperfusion.  Am J Physiol Heart Circ Physiol. 2006;  290(5) H2024-H2034
  • 36 Zazueta C, Franco M, Correa F et al.. Hypothyroidism provides resistance to kidney mitochondria against the injury induced by renal ischemia-reperfusion.  Life Sci. 2007;  80(14) 1252-1258
  • 37 Li P A, Uchino H, Elmer E, Siesjo B K. Amelioration by cyclosporin A of brain damage following 5 or 10 min of ischemia in rats subjected to preischemic hyperglycemia.  Brain Res. 1997;  753(1) 133-140
  • 38 Kim J-S, Ohshima S, Pediaditakis P, Lemasters J J. Nitric oxide protects rat hepatocytes against reperfusion injury mediated by the mitochondrial permeability transition.  Hepatology. 2004;  39 1533-1543
  • 39 Herman B, Nieminen A L, Gores G J, Lemasters J J. Irreversible injury in anoxic hepatocytes precipitated by an abrupt increase in plasma membrane permeability.  FASEB J. 1988;  2(2) 146-151
  • 40 Nieminen A L, Gores G J, Wray B E, Tanaka Y, Herman B, Lemasters J J. Calcium dependence of bleb formation and cell death in hepatocytes.  Cell Calcium. 1988;  9(5-6) 237-246
  • 41 Gao W, Bentley R C, Madden J F, Clavien P A. Apoptosis of sinusoidal endothelial cells is a critical mechanism of preservation injury in rat liver transplantation.  Hepatology. 1998;  27(6) 1652-1660
  • 42 Natori S, Selzner M, Valentino K L et al.. Apoptosis of sinusoidal endothelial cells occurs during liver preservation injury by a caspase-dependent mechanism.  Transplantation. 1999;  68(1) 89-96
  • 43 Richter C, Schweizer M, Cossarizza A, Franceschi C. Control of apoptosis by the cellular ATP level.  FEBS Lett. 1996;  378(2) 107-110
  • 44 Leist M, Single B, Castoldi A F, Kuhnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis.  J Exp Med. 1997;  185(8) 1481-1486
  • 45 Eguchi Y, Shimizu S, Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis.  Cancer Res. 1997;  57(10) 1835-1840
  • 46 Galluzzi L, Larochette N, Zamzami N, Kroemer G. Mitochondria as therapeutic targets for cancer chemotherapy.  Oncogene. 2006;  25(34) 4812-4830
  • 47 Scaffidi C, Fulda S, Srinivasan A et al.. Two CD95 (APO-1/Fas) signaling pathways.  EMBO J. 1998;  17(6) 1675-1687
  • 48 Hatano E, Bradham C A, Stark A, Iimuro Y, Lemasters J J, Brenner D A. The mitochondrial permeability transition augments Fas-induced apoptosis in mouse hepatocytes.  J Biol Chem. 2000;  275(16) 11814-11823
  • 49 Wang X. The expanding role of mitochondria in apoptosis.  Genes Dev. 2001;  15(22) 2922-2933
  • 50 Wei M C, Zong W X, Cheng E H et al.. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death.  Science. 2001;  292(5517) 727-730
  • 51 Zamzami N, Susin S A, Marchetti P et al.. Mitochondrial control of nuclear apoptosis.  J Exp Med. 1996;  183(4) 1533-1544
  • 52 Gujral J S, Bucci T J, Farhood A, Jaeschke H. Mechanism of cell death during warm hepatic ischemia-reperfusion in rats: apoptosis or necrosis?.  Hepatology. 2001;  33(2) 397-405
  • 53 Kohli V, Madden J F, Bentley R C, Clavien P A. Calpain mediates ischemic injury of the liver through modulation of apoptosis and necrosis.  Gastroenterology. 1999;  116(1) 168-178
  • 54 Qian T, Herman B, Lemasters J J. The mitochondrial permeability transition mediates both necrotic and apoptotic death of hepatocytes exposed to Br-A23187.  Toxicol Appl Pharmacol. 1999;  154(2) 117-125
  • 55 Czerniak A, Soreide O, Gibson R N et al.. Liver atrophy complicating benign bile duct strictures: surgical and interventional radiologic approaches.  Am J Surg. 1986;  152 294-300
  • 56 Michalopoulos G K, DeFrances M C. Liver regeneration.  Science. 1997;  276 60-66
  • 57 Barbason H, Bouzahzah B, Herens C et al.. Circadian synchronization of liver regeneration in adult rats: the role played by adrenal hormones.  Cell Tissue Kinet. 1989;  22 451-460
  • 58 Souto M, Llanos J M. The circadian optimal time for hepatectomy in the study of liver regeneration.  Chronobiol Int. 1985;  2 169-175
  • 59 Koniaris L G, McKillop I H, Schwartz S I, Zimmers T A. Liver regeneration.  J Am Coll Surg. 2003;  197 634-659
  • 60 Kim R D, Stein G S, Chari R S. Impact of cell swelling on proliferative signal transduction in the liver.  J Cell Biochem. 2001;  83 56-69
  • 61 Nagy P, Teramoto T, Factor V M et al.. Reconstitution of liver mass via cellular hypertrophy in the rat.  Hepatology. 2001;  33 339-345
  • 62 Fausto N. Liver regeneration.  J Hepatol. 2000;  32 19-31
  • 63 Komori K, Nagino M, Nimura Y. Hepatocyte morphology and kinetics after portal vein embolization.  Br J Surg. 2006;  93(6) 745-751
  • 64 Lambotte L, Li B, Leclercq I, Sempoux C, Saliez A, Horsmans Y. The compensatory hyperplasia (liver regeneration) following ligation of a portal branch is initiated before the atrophy of the deprived lobes.  J Hepatol. 2000;  32(6) 940-945
  • 65 Hortelano S, Dewez B, Genaro A M, Diaz-Guerra M J, Bosca L. Nitric oxide is released in regenerating liver after partial hepatectomy.  Hepatology. 1995;  21(3) 776-786
  • 66 Rai R M, Lee F Y, Rosen A et al.. Impaired liver regeneration in inducible nitric oxide synthase deficient mice.  Proc Natl Acad Sci U S A. 1998;  95(23) 13829-13834
  • 67 Garcia-Trevijano E R, Martinez-Chantar M L, Latasa M U, Mato J M, Avila M A. NO sensitizes rat hepatocytes to proliferation by modifying S-adenosylmethionine levels.  Gastroenterology. 2002;  122(5) 1355-1363
  • 68 Uemura T, Miyazaki M, Hirai R et al.. Different expression of positive and negative regulators of hepatocyte growth in growing and shrinking hepatic lobes after portal vein branch ligation in rats.  Int J Mol Med. 2000;  5(2) 173-179
  • 69 Kaido T, Yoshikawa A, Seto S et al.. Hepatocyte growth factor supply accelerates compensatory hypertrophy caused by portal branch ligation in normal and jaundiced rats.  J Surg Res. 1999;  85(1) 115-119
  • 70 Kusaka K, Imamura H, Tomiya T, Takayama T, Makuuchi M. Expression of transforming growth factor-alpha and -beta in hepatic lobes after hemihepatic portal vein embolization.  Dig Dis Sci. 2006;  51(8) 1404-1412
  • 71 Vejda S, Cranfield M, Peter B et al.. Expression and dimerization of the rat activin subunits betaC and betaE: evidence for the formation of novel activin dimers.  J Mol Endocrinol. 2002;  28(2) 137-148
  • 72 Takamura K, Tsuchida K, Miyake H, Tashiro S, Sugino H. Activin and activin receptor expression changes in liver regeneration in rat.  J Surg Res. 2005;  126(1) 3-11
  • 73 Akerman P, Cote P, Yang S Q et al.. Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy.  Am J Physiol. 1992;  263(4) G579-G585
  • 74 Yamada Y, Kirillova I, Peschon J J, Fausto N. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor.  Proc Natl Acad Sci U S A. 1997;  94(4) 1441-1446
  • 75 Yokoyama S, Yokoyama Y, Kawai T et al.. Biphasic activation of liver regeneration-associated signals in an early stage after portal vein branch ligation.  Biochem Biophys Res Commun. 2006;  349(2) 732-739
  • 76 Hayashi H, Nagaki M, Imose M et al.. Normal liver regeneration and liver cell apoptosis after partial hepatectomy in tumor necrosis factor-alpha-deficient mice.  Liver Int. 2005;  25(1) 162-170
  • 77 Stärkel P, Horsmans Y, Sempoux C et al.. After portal branch ligation in rat, nuclear factor kappaB, interleukin-6, signal transducers and activators of transcription 3, c-fos, c-myc, and c-jun are similarly induced in the ligated and nonligated lobes.  Hepatology. 1999;  29(5) 1463-1470
  • 78 Kobayashi S, Nagino M, Yokoyama Y, Nimura Y, Sokabe M. Evaluation of hepatic interleukin-6 secretion following portal vein ligation using a minimal surgical stress model.  J Surg Res. 2006;  135(1) 27-33
  • 79 Wrana J L, Attisano L, Wieser R, Ventura F, Massague J. Mechanism of activation of the TGF-beta receptor.  Nature. 1994;  370(6488) 341-347
  • 80 Abdollah S, Macias-Silva M, Tsukazaki T et al.. TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling.  J Biol Chem. 1997;  272(44) 27678-27685
  • 81 Wu G, Chen Y G, Ozdamar B et al.. Structural basis of Smad2 recognition by the Smad anchor for receptor activation.  Science. 2000;  287(5450) 92-97
  • 82 Hocevar B A, Smine A, Xu X X, Howe P H. The adaptor molecule Disabled-2 links the transforming growth factor beta receptors to the Smad pathway.  EMBO J. 2001;  20(11) 2789-2801
  • 83 Mishra L, Marshall B. Adaptor proteins and ubiquinators in TGF-beta signaling.  Cytokine Growth Factor Rev. 2006;  17(1-2) 75-87
  • 84 Dong C, Li Z, Alvarez Jr R, Feng X H, Goldschmidt-Clermont P J. Microtubule binding to Smads may regulate TGF beta activity.  Mol Cell. 2000;  5(1) 27-34
  • 85 Macias-Silva M, Li W, Leu J I, Crissey M A, Taub R. Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration.  J Biol Chem. 2002;  277(32) 28483-28490
  • 86 Stroschein S L, Wang W, Zhou S, Zhou Q, Luo K. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein.  Science. 1999;  286(5440) 771-774
  • 87 Sun Y, Liu X, Ng-Eaton E, Lodish H F, Weinberg R A. SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor beta signaling.  Proc Natl Acad Sci U S A. 1999;  96(22) 12442-12447
  • 88 Albrecht J H, Meyer A H, Hu M Y. Regulation of cyclin-dependent kinase inhibitor p21(WAF1/Cip1/Sdi1) gene expression in hepatic regeneration.  Hepatology. 1997;  25(3) 557-563
  • 89 Farges O, Belghiti J, Kianmanesh R et al.. Portal vein embolization before right hepatectomy: prospective clinical trial.  Ann Surg. 2003;  237(2) 208-217
  • 90 Lee K C, Kinoshita H, Hirohashi K, Kubo S, Iwasa R. Extension of surgical indications for hepatocellular carcinoma by portal vein embolization.  World J Surg. 1993;  17(1) 109-115
  • 91 Azoulay D, Castaing D, Krissat J et al.. Percutaneous portal vein embolization increases the feasibility and safety of major liver resection for hepatocellular carcinoma in injured liver.  Ann Surg. 2000;  232(5) 665-672
  • 92 Wakabayashi H, Ishimura K, Okano K et al.. Application of preoperative portal vein embolization before major hepatic resection in patients with normal or abnormal liver parenchyma.  Surgery. 2002;  131(1) 26-33
  • 93 Imamura H, Shimada R, Kubota M et al.. Preoperative portal vein embolization: an audit of 84 patients.  Hepatology. 1999;  29(4) 1099-1105
  • 94 Nagino M, Nimura Y, Kamiya J et al.. Changes in hepatic lobe volume in biliary tract cancer patients after right portal vein embolization.  Hepatology. 1995;  21(2) 434-439
  • 95 Mizuno S, Nimura Y, Suzuki H, Yoshida S. Portal vein branch occlusion induces cell proliferation of cholestatic rat liver.  J Surg Res. 1996;  60(1) 249-257
  • 96 Michalopoulos G K. Liver regeneration.  J Cell Physiol. 2007;  213 286-300
  • 97 Mangnall D, Smith K, Bird N C, Majeed A W. Early increases in plasminogen activator activity following partial hepatectomy in humans.  Comp Hepatol. 2004;  3(1) 11
  • 98 Blasi F. Urokinase and urokinase receptor: a paracrine/autocrine system regulating cell migration and invasiveness.  Bioessays. 1993;  15(2) 105-111
  • 99 Stetler-Stevenson W G. Dynamics of matrix turnover during pathologic remodeling of the extracellular matrix.  Am J Pathol. 1996;  148(5) 1345-1350
  • 100 Kim T H, Mars W M, Stolz D B, Michalopoulos G K. Expression and activation of pro-MMP-2 and pro-MMP-9 during rat liver regeneration.  Hepatology. 2000;  31(1) 75-82
  • 101 Mars W M, Liu M L, Kitson R P, Goldfarb R H, Gabauer M K, Michalopoulos G K. Immediate early detection of urokinase receptor after partial hepatectomy and its implications for initiation of liver regeneration.  Hepatology. 1995;  21(6) 1695-1701
  • 102 Liu M L, Mars W M, Zarnegar R, Michalopoulos G K. Uptake and distribution of hepatocyte growth factor in normal and regenerating adult rat liver.  Am J Pathol. 1994;  144(1) 129-140
  • 103 Naldini L, Vigna E, Bardelli A, Follenzi A, Galimi F, Comoglio P M. Biological activation of pro-HGF (hepatocyte growth factor) by urokinase is controlled by a stoichiometric reaction.  J Biol Chem. 1995;  270(2) 603-611
  • 104 Shimizu M, Hara A, Okuno M et al.. Mechanism of retarded liver regeneration in plasminogen activator-deficient mice: impaired activation of hepatocyte growth factor after Fas-mediated massive hepatic apoptosis.  Hepatology. 2001;  33(3) 569-576
  • 105 Thorgeirsson S S, Evarts R P, Bisgaard H C, Fujio K, Hu Z. Hepatic stem cell compartment: activation and lineage commitment.  Proc Soc Exp Biol Med. 1993;  204(3) 253-260
  • 106 Oh S H, Witek R P, Bae S H et al.. Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration.  Gastroenterology. 2007;  132(3) 1077-1087
  • 107 Gordon G J, Coleman W B, Grisham J W. Temporal analysis of hepatocyte differentiation by small hepatocyte-like progenitor cells during liver regeneration in retrorsine-exposed rats.  Am J Pathol. 2000;  157(3) 771-786
  • 108 Gordon G J, Coleman W B, Hixson D C, Grisham J W. Liver regeneration in rats with retrorsine-induced hepatocellular injury proceeds through a novel cellular response.  Am J Pathol. 2000;  156(2) 607-619
  • 109 Fujio K, Evarts R P, Hu Z, Marsden E R, Thorgeirsson S S. Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat.  Lab Invest. 1994;  70(4) 511-516
  • 110 Roskams T A, Libbrecht L, Desmet V J. Progenitor cells in diseased human liver.  Semin Liver Dis. 2003;  23(4) 385-396
  • 111 Lagasse E, Connors H, Al-Dhalimy M et al.. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.  Nat Med. 2000;  6(11) 1229-1234
  • 112 Wang X, Willenbring H, Akkari Y et al.. Cell fusion is the principal source of bone-marrow-derived hepatocytes.  Nature. 2003;  422(6934) 897-901
  • 113 Vassilopoulos G, Wang P R, Russell D W. Transplanted bone marrow regenerates liver by cell fusion.  Nature. 2003;  422(6934) 901-904
  • 114 Sugimoto H, Yang C, LeBleu V S et al.. BMP-7 functions as a novel hormone to facilitate liver regeneration.  FASEB J. 2007;  21 256-264
  • 115 Ando K, Miyazaki M, Shimizu H, Okuno A, Nakajima N. Beneficial effects of prostaglandin E(1) incorporated in lipid microspheres on liver injury and regeneration after 90% partial hepatectomy in rats.  Eur Surg Res. 2000;  32 155-161
  • 116 Gatzidou E, Kouraklis G, Theocharis S. Insights on augmenter of liver regeneration cloning and function.  World J Gastroenterol. 2006;  12 4951-4958
  • 117 Mohammed F F, Khokha R. Thinking outside the cell: proteases regulate hepatocyte division.  Trends Cell Biol. 2005;  15 555-563
  • 118 Gomez D, Homer-Vanniasinkam S, Graham A M, Prasad K R. Role of ischaemic preconditioning in liver regeneration following major liver resection and transplantation.  World J Gastroenterol. 2007;  13 657-670
  • 119 Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning.  Am J Physiol Gastrointest Liver Physiol. 2003;  284 G15-G26
  • 120 Fürst G, Schulte am Esch J, Poll L W et al.. Portal vein embolization and autologous CD133 + bone marrow stem cells for liver regeneration: initial experience.  Radiology. 2007;  243 171-179
  • 121 Dorrell C, Grompe M. Liver repair by intra- and extrahepatic progenitors.  Stem Cell Rev. 2005;  1 61-64

Kevin E BehrnsM.D. 

Professor and Vice Chairman, Department of Surgery, Division of General and GI Surgery, University of Florida

1600 SW Archer Road, PO Box 100286, Gainesville, FL 32610

Email: Kevin.Behrns@surgery.ufl.edu

    >