Minim Invasive Neurosurg 2004; 47(5): 266-272
DOI: 10.1055/s-2004-830076
Original Article
© Georg Thieme Verlag Stuttgart · New York

Image-Guided Robotic Radiosurgery in a Rat Glioma Model

T.  G.  Psarros1 , B.  Mickey1 , K.  Gall2 , J.  Gilio2 , J.  Delp2 , C.  White3 , J.  Drees1 , M.  Willis3 , D.  Pistemmna2 , C.  A.  Giller1
  • 1Departments of Neurosurgery, University of Texas Southwestern School of Medicine, Dallas, TX, USA
  • 2Department of Radiation Oncology, University of Texas Southwestern School of Medicine, Dallas, TX, USA
  • 3Department of Pathology, University of Texas Southwestern School of Medicine, Dallas, TX, USA
Further Information

Publication History

Publication Date:
02 December 2004 (online)

Abstract

Despite the proven efficacy of radiosurgery for the treatment of brain tumors, limited histological information is available after treatment that might allow a better understanding of the relationship between radiation dose, the volume treated, and the response of the surrounding brain to the delivered radiation. The use of an animal model could provide the opportunity to clarify these relationships and answer several other key questions arising in clinical practice. We show here that treatment of small animals with radiosurgery is feasible using a robotically controlled linear accelerator, which offers the advantages of radiosurgery and preserves the potential for fractionated regimens without rigid immobilization. Specifically, we demonstrate the use of a robotically driven linear accelerator to provide radiosurgical treatment to a rat brain tumor model.

References

  • 1 Adler J R, Murphy M J, Chang S D, Hancock S L. Image-guided robotic radiosurgery.  Neurosurgery. 1999;  44 1299-1307
  • 2 Barker M, Hoshino T, Gurcay O, Wilson C, Nielson S L, Downie R, Eliason J. Development of an animal brain tumor model and its response to therapy with 1,3-bis-(2-chloroethyl)-1-nitrosurea.  Cancer Res. 1973;  33 976-986
  • 3 Lal S, Lacroix M, Tofilon P, Fuller G, Sawaya R, Lang F L. An implantable guide-screw system for brain tumor studies in small animals.  J Neurosurg. 2000;  92 326-333
  • 4 Chang S D, Main W, Martin D P, Gibbs I C, Heilbrun M P. An analysis of the accuracy of the cyberknife: a robotic frameless stereotactic system.  Neurosurgery. 2003;  52 140-147
  • 5 Konziolka D, Lunsford L D, Classen D, Maitz A, Flickinger J C. Radiobiology of radiosurgery: Part I. The normal rat brain model.  Neurosurgery. 1992;  31 271-279
  • 6 Konziolka D, Lunsford L D, Classen D, Pandalai S, Maitz A, Flickinger J C. Radiobiology of radiosurgery: Part II. The rat C6 glioma model.  Neurosurgery. 1992;  31 280-288
  • 7 Kondziolka D, Somaza S, Corney C, Lundsford L D, Classen D, Pandalai S, Maitz A, Flickinger J C. Radiosurgery and fractionated radiation therapy: comparison of different techniques in an in vivo rat glioma model.  J Neurosurg. 1996;  84 1033-1038
  • 8 Barker M, Deen M S, Baker D G. BCNU and x-ray therapy of intracerebral 9L rat tumors.  Int J Rad Oncol BioI Phys. 1979;  5 1581-1583
  • 9 Geyer l, Landay A. Immunogenetic and immunologic aspects of gliosarcoma growth in rats.  Lab invest. 1983;  49 436-445
  • 10 Bampoe J, Glen J, Mackenzie I, Porter P, Bernstein M. Effect of implant dose/volume and surgical resection on survival in a rat glioma brachytherapy model: implications for brain tumor therapy.  Neurosurgery. 1997;  41 1374-1384
  • 11 Altschuler E, Lunsford L D, Konziolka D, Wu A, Maitz A H, Martinez A J, Flickinger J C. Radiobiologic models of radiosurgery.  Neurosurg Clin N Am. 1992;  3 61-77
  • 12 Dilmanian F A, Button T M, LeDuc G, Zhong N, Pena L A, Smith J A, Martinez S R, Bacarian T, Tammam J, Ren B, Farmer P M, Kalef-Ezra Micca Pl, Nawrocky M M, Niederer l A, Recksiek F P, Fuchs A. Response of rat intracranial 9L gliosarcoma to microbeam radiation therapy.  Neuro-oncology. 2002;  4 26-38
  • 13 Henderson S D, Kimler B F, Morantz R A. Radiation therapy of 9L rat brain tumors.  Int J Rad Oncol BioI Phys. 1981;  7 497-502
  • 14 Kim J H, Khil M S, Kolozsvary A, Gutierrez J A, Brown S. Fractionated radiosurgery for 9L gliosarcoma in the rat brain.  Int J Rad Oncol BioI Phys. 1999;  45 1035-1040
  • 15 Malaise E P, Fertil B, Chavaudra N, Guichard M. Distribution of radiation sensitivities for human tumor cells of specific histological types: comparison of in vitro to in vivo data.  Int J Rad Oncol BioI Phys. 1986;  12 617-624
  • 16 Rand R W, Khonsary A, Brown W J, Winter J, Snow H D. Leksell stereotactic radiosurgey in the treatment of eye melanoma.  Neurol Res. 1987;  9 142-146
  • 17 Wallner K E, Galicich J H, Krol G, Arbit E, Malkin M. Patterns of failure following treatment for glioblastoma muItiforme and anaplastic astrocytoma.  Int J Rad Oncol BioI Phys. 1989;  16 1405-1409
  • 18 Wheeler K T, Kaufman K, Feldstein. Response of a rat brain tumor to fractionated therapy with low doses of BCNU and irradiation.  Int J Rad Oncol BioI Phys. 1979;  5 1553-1557
  • 19 Khil M S, Kolozsvary B S, Apple M, Kim J H. Increased tumor cures using combined radiosurgery and BCNU in the treatment of 9L glioma in the rat brain.  Int J Rad Oncol BioI Phys. 2000;  47 511-516
  • 20 Kimler B F. The 9L rat brain tumor model for pre-clinical investigation of radiation-chemotherapy interactions.  J Neuro-oncol. 1994;  20 103-109
  • 21 Smilowitz H M, Coderre J A, Nawrocky M M, Tu W, Pinkerton A, Jahn G H, Gebbers N, Slatkin D N. The combination of x-ray-mediated radiosurgery and gene-mediated immunoprophylaxis for advanced intracerebral gliosarcomas in rats.  J Neuro-oncol. 2002;  57 9-18
  • 22 Wheeler K T, Kaufman K. Influence of fractionated schedules on the response of a rat brain tumor to therapy with BCNU and radiation.  Int J Rad Oncol Biol Phys. 1980;  6 845-849
  • 23 Casanueva F F, Gordon W L, Friesen H G. Computed cranial tomography in the evaluation of pituitary tumours in rats.  Acta Endocrinol. 1983;  103 487-491
  • 24 Kapp l P, Holla P S. Detection of experimental brain tumor in rat by computed tomography.  Surg Neurol. 1981;  16 455-458
  • 25 Brekenfeld C, Foert E, Hundt W, Kenn W, Lodeann K P, Gehl H B. Enhancement of cerebral diseases: how much contrast agent is enough? Comparison of 0.1, 0.2, and 0.3 mm/kg gadoteridol at 0.2 T with 0.1 mmol/kg gadoterdol at 1.5 T.  Invest Radiol. 2001;  36 266-275
  • 26 Sighvatsson V, Ericson K, Tommasson H. Optimizing contrast-enhanced cranial CT for detection of brain metastases.  Acta RadioI. 1998;  39 718-722
  • 27 Mathews V P, Caldemeyer K S, Ulmer L J, Nguyen H, Yuh W T. Effects of contrast dose, delayed imaging, and magnetization transfer saturation on gadolinium-enhanced MR imaging of brain lesions.  J Mag Reson Imag. 1997;  7 14-22
  • 28 Kurita R, Ostertag B, Baumer K, Kopitzki P, Warnke C. Early effects of PRS irradiation for 9L gliosarcoma: Characterization of interphase cell death.  Minim Invas Neurosurg. 2000;  43 197-200
  • 29 Barth R F. Rat brain tumor models in experimental neuro-oncology: The 9L, C6,T9, F98, RG2 (D74), RT-2, and CNS-1 gliomas.  J Neuro-oncol. 1998;  36 91-102 (not cited in text!!)

Thomas G. PsarrosM. D. 

University of Texas Southwestern Medical Center

5323 Harry Hines Blvd.

Dallas, Texas 75390-8855

USA

Phone: +1-214-648-3234

Email: tompsarros@aol.com

    >