Semin Thromb Hemost 2003; 29(5): 435-450
DOI: 10.1055/s-2003-44551
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Blood Rheology and Hemodynamics

Oguz K. Baskurt1 , Herbert J. Meiselman2
  • 1Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
  • 2Professor, Department of Physiology and Biophysics, University of Southern California School of Medicine, Los Angeles, California
Further Information

Publication History

Publication Date:
21 November 2003 (online)

ABSTRACT

Blood is a two-phase suspension of formed elements (i.e., red blood cells [RBCs], white blood cells [WBCs], platelets) suspended in an aqueous solution of organic molecules, proteins, and salts called plasma. The apparent viscosity of blood depends on the existing shear forces (i.e., blood behaves as a non-Newtonian fluid) and is determined by hematocrit, plasma viscosity, RBC aggregation, and the mechanical properties of RBCs. RBCs are highly deformable, and this physical property significantly contributes to aiding blood flow both under bulk flow conditions and in the microcirculation. The tendency of RBCs to undergo reversible aggregation is an important determinant of apparent viscosity because the size of RBC aggregates is inversely proportional to the magnitude of shear forces; the aggregates are dispersed with increasing shear forces, then reform under low-flow or static conditions. RBC aggregation also affects the in vivo fluidity of blood, especially in the low-shear regions of the circulatory system. Blood rheology has been reported to be altered in various physiopathological processes: (1) Alterations of hematocrit significantly contribute to hemorheological variations in diseases and in certain extreme physiological conditions; (2) RBC deformability is sensitive to local and general homeostasis, with RBC deformability affected by alterations of the properties and associations of membrane skeletal proteins, the ratio of RBC membrane surface area to cell volume, cell morphology, and cytoplasmic viscosity. Such alterations may result from genetic disorders or may be induced by such factors as abnormal local tissue metabolism, oxidant stress, and activated leukocytes; and (3) RBC aggregation is mainly determined by plasma protein composition and surface properties of RBCs, with increased plasma concentrations of acute phase reactants in inflammatory disorders a common cause of increased RBC aggregation. In addition, RBC aggregation tendency can be modified by alterations of RBC surface properties because of RBC in vivo aging, oxygen-free radicals, or proteolytic enzymes. Impairment of blood fluidity may significantly affect tissue perfusion and result in functional deteriorations, especially if disease processes also disturb vascular properties.

REFERENCES

  • 1 Bujalkova M, Straka S, Jureckova A. Hippocrates' humoral pathology in nowaday's reflections.  Bratisl Lek Listy . 2001;  102 489-492
  • 2 Riddle J M. Theory and practice in medieval medicine.  Viator . 1974;  5 157-184
  • 3 Schultz S G. Willam Harvey and the circulation of the blood: The birth of a scientific revolution and modern physiology.  News Physiol Sci . 2002;  17 175-180
  • 4 Hull G. The influence of Herman Boerhaave.  J R Soc Med . 1997;  90 512-514
  • 5 Copley A L. Robin Fahraeus-the scientist and the person.  Clin Hemorheol . 1989;  9 395-433
  • 6 Bauer A. Historia magistra pathologiae.  Würzbg Medizinhist Mitt . 1993;  11 59-76
  • 7 Goldsmith H L, Cokelet G, Gaehtgens P. Robin Fahraeus: evolution of his concepts cardiovascular physiology.  Am J Physiol . 1989;  257 H1005-H1015
  • 8 Copley A L. Fluid mechanics and biorheology.  Clin Hemorheol . 1990;  10 3-19
  • 9 Merrill E W. Rheology of blood.  Physiol Rev . 1969;  49 863-888
  • 10 Matrai A, Whittington R B, Skalak R. Biophysics. In: Chien S, Dormandy J, Ernst E, Matrai A, eds. Clinical Hemorheology Dordrecht: Martinus Nijhoff 1987: 9-71
  • 11 Thurston G B. Viscoelasticity of human blood.  Biophys J . 1972;  12 1205-1217
  • 12 Lowe G DO, Barbenel J C. Plasma and blood viscosity. In: Lowe GDO, ed. Clinical Blood Rheology, Vol 1 Boca Raton, FL: CRC Press 1988: 11-44
  • 13 Ross J, Schmid-Schönbein G. Dynamics of the peripheral circulation. In: West JB, ed. Physiological Basis of Medical Practice Baltimore, MD: Williams & Wilkins 1990: 138-158
  • 14 Rampling M W. Red cell aggregation and yield stress. In: Lowe GDO, ed. Clinical Blood Rheology Boca Raton, FL: CRC Press 1988: 11-44
  • 15 Chien S. Biophysical behavior of red cells in suspension. In: Surgenor DM, ed. Red Blood Cell, Vol 3. New York: Academic Press 1975: 1031-1133
  • 16 Rand P W, Lacombe E, Hunt H E, Austin W H. Viscosity of normal human blood under normothermic and hypothermic conditions.  J Appl Physiol . 1964;  19 117-122
  • 17 Somer T, Meiselman H J. Disorders of blood viscosity.  Ann Med . 1993;  25 31-39
  • 18 Lowe G DO. Rheology of paraproteinemias and leukemias. In: Lowe GDO, ed. Clinical Blood Rheology, Vol 2 Boca Raton, FL: CRC Press 1988: 67-88
  • 19 Cokelet G R. Rheology and tube flow of blood. In: Skalak R, Chien S, eds. Handbook of Engineering New York: McGraw-Hill 1987: 14.1-14.17
  • 20 Schmid-Schönbein H, Wells R E, Goldstone J. Fluid drop-like behaviour of erythrocyte-disturbance in pathology in its quantification.  Biorheology . 1971;  7 227-234
  • 21 Wells R, Schmid-Schönbein H. Red cell deformation and fluidity of concentrated cell suspensions.  J Appl Physiol . 1969;  27 213-217
  • 22 Chien S, Sung L A. Physicochemical basis and clinical implications of red cell aggregation.  Clin Hemorheol . 1987;  7 71-91
  • 23 Chien S. Red cell deformability and its relevance to blood flow.  Annu Rev Physiol . 1987;  49 177-192
  • 24 Baskurt O K, Meiselman H J. Cellular determinants of low-shear blood viscosity.  Biorheology . 1997;  34 235-247
  • 25 Lipowsky H H, Cram L E, Justice W, Eppihimer M J. Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability.  Microvasc Res . 1993;  46 43-64
  • 26 Mchedlishvili G, Varazashvili M, Gobejishvili L. Local RBC aggregation disturbing blood fluidity and causing stasis in microvessels.  Clin Hemorheol Microcirc . 2002;  26 99-106
  • 27 Eppihimer M J, Lipowsky H H. Effects of leukocyte-capillary plugging on the resistance of flow in the microvasculature of cremaster muscle for normal and activated leukocytes.  Microvasc Res . 1996;  51 187-201
  • 28 Mohandas N, Chasis J A. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids.  Semin Hematol . 1993;  30 171-192
  • 29 Mohandas N, Chasis J A, Shohet S B. The influence of membrane skeleton on red cell deformability, membrane material properties and shape.  Semin Hematol . 1983;  20 225-242
  • 30 Evans E A, LaCelle P L. Intrinsic material properties of erythrocyte membrane indicated by mechanical analysis of deformation.  Blood . 1975;  45 29-43
  • 31 Chasis J A, Shohet S B. Red cell biochemical anatomy and membrane material properties.  Annu Rev Physiol . 1987;  49 237-248
  • 32 Hochmuth R M, Waugh R. Erythrocyte membrane elasticity and viscosity.  Annu Rev Physiol . 1986;  49 209-219
  • 33 Lux S E. Dissecting the red cell membrane skeleton.  Nature . 1979;  281 426-429
  • 34 Mohandas N, Shohet S B. The role of membrane associated enzymes in regulation of erythrocyte shape and deformability.  Clin Hematol . 1981;  10 223-237
  • 35 Chien S. Principles and techniques for assessing erythrocyte deformability.  Blood Cells . 1977;  3 71-95
  • 36 Baskurt O K, Fisher T C, Meiselman H J. Sensitivity of the cell transit analyzer (CTA) to alterations of red blood cell deformability: role of cell size-pore size ratio and sample preparation.  Clin Hemorheol . 1996;  16 753-765
  • 37 Hardeman M R, Goedhart P T, Dobbe J GG, Lettinga K P. Laser assisted optical rotational cell analyzer (LORCA): a new instrument for measurement of various structural hemorheological parameters.  Clin Hemorheol Microcirc . 1994;  14 605-618
  • 38 Meiselman H J. Red blood cell role in RBC aggregation: 1963-1993 and beyond.  Clin Hemorheol . 1993;  13 575-592
  • 39 Nash G B, Wenby R B, Meiselman H J. Influence of cellular factors on red cell aggregation.  Clin Hemorheol . 1987;  7 93-108
  • 40 Armstrong J K, Meiselman H J, Wenby R B, Fisher T C. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers.  Biorheology . 2001;  38 239-247
  • 41 Baskurt O K, Temiz, A, Meiselman H J. Effect of superoxide anions on red blood cell rheologic properties.  Free Radic Biol Med . 1998;  24 102-110
  • 42 Baskurt O K, Meiselman H J. Activated polymorphonuclear leukocytes affect red blood cell aggregability.  J Leukoc Biol . 1998;  63 89-93
  • 43 Baskurt O K, Temiz A, Meiselman H J. Red blood cell aggregation in experimental sepsis.  J Lab Clin Med . 1997;  130 183-190
  • 44 Baskurt O K, Farley R A, Meiselman H J. Erythrocyte aggregation tendency and cellular properties in horse, human and rat: a comparative study.  Am J Physiol . 1997;  273 H2604-H2612
  • 45 Baskurt O K, Bor-Küçükatay M, Yalcin O, Meiselman H J, Armstrong J K. Standard aggregating media to test the "aggregability" of rat red blood cells.  Clin Hemorheol Microcirc . 2000;  22 161-166
  • 46 Kobuchi Y, Tadanao I, Ogiwara A. A model for rouleaux pattern formation of red blood cells.  J Theor Biol . 1988;  130 129-145
  • 47 Brooks D E, Greig R G, Janzen J. Mechanisms of erythrocyte aggregation. In: Cokelet GR, Meiselman HJ, Brooks DE, eds. Mechanisms of Erythrocyte Aggregation in Erythrocyte Mechanics and Blood Flow New York: A.R. Liss 1980: 119-140
  • 48 Chien S, Jan K M. Ultrastructural basis of the mechanism of rouleaux formation.  Microvasc Res . 1973;  5 155-166
  • 49 van Oss J C, Arnold K, Coakley W T. Depletion flocculation and depletion stabilization of erythrocytes.  Cell Biophys . 1990;  17 1-10
  • 50 Evans E, Berk D, Leung A, Mohandas N. Detachment of agglutinin-bonded red blood cells.  Biophys J . 1991;  59 849-860
  • 51 Baskurt O K, Tugral E, Neu B, Meiselman H J. Particle electrophoresis as a tool to understand the aggregation behavior of red blood cells.  Electrophoresis . 2002;  23 2103-2109
  • 52 Neu B, Meiselman H J. Depletion-mediated red blood cell aggregation in polymer solutions.  Biophys J . 2002;  83 2482-2490
  • 53 Bäumler H, Donath E, Krabi A. et al . Electrophoresis of human red blood cells and platelets: evidence for depletion of dextran.  Biorheology . 1996;  33 333-351
  • 54 Bäumler H, Neu B, Donath E, Kiesewetter H. Basic phenomena of red blood cell rouleaux formation.  Biorheology . 1999;  36 439-442
  • 55 Bauersachs R M, Wenby R B, Meiselman H J. Determination of specific red blood cell aggregation indices via an automated system.  Clin Hemorheol . 1989;  9 1-25
  • 56 Baskurt O K, Meiselman H J, Kayar E. Measurement of red blood cell aggregation in a "plate-plate" shearing system by analysis of light transmission.  Clin Hemorheol Microcirc . 1998;  19 307-314
  • 57 Firrell J C, Lipowsky H H. Leukocyte margination and deformation in mesenteric venules of rat.  Am J Physiol . 1989;  256 H1667-H1674
  • 58 Buttrum S M, Nash G B, Hatton R. Changes in neutrophil rheology after acute ischemia and reperfusion in the rat hindlimb.  J Lab Clin Med . 1996;  128 506-514
  • 59 Buttrum S M, Drost E M, MacNee W. et al . Rheological response of neutrophils to different types of stimulation.  J Appl Physiol . 1994;  77 1801-1810
  • 60 Nash G B, Abbitt K B, Tate K, Jetha K A, Egginton S. Changes in the mechanical and adhesive behaviour of human neutrophils on cooling in vitro.  Pflügers Arch . 2001;  442 762-770
  • 61 Isbister J P. The stress polycythaemia syndromes and their haemorheological significance.  Clin Hemorheol . 1987;  7 159-179
  • 62 Boucher J H. The equine spleen: source of dangerous red blood cells.  J Equine Vet Sci . 1987;  7 140-142
  • 63 Baskurt O K, Levi E, Caglayan S. et al . The role of hemorheologic factors in the coronary circulation.  Clin Hemorheol . 1991;  11 121-127
  • 64 Fan F-C, Chen R YZ, Schuessler G B, Chien S. Effects of hematocrit variations on regional hemodynamics and oxygen transport in the dog.  Am J Physiol . 1980;  238 H545-H552
  • 65 Rendell M, Luu T, Quinlan E. et al . Red cell filterability determined using the cell transit time analyzer (CTTA): effects of ATP depletion and changes in calcium concentration.  Biochim Biophys Acta . 1992;  1133 293-300
  • 66 Kayar E, Mat F, Meiselman H J, Baskurt OK: Red blood cell rheological alteration in a rat model of ischemia-reperfusion injury. Biorheology .  2001;  38 405-414
  • 67 Mohandas N, Evans E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects.  Annu Rev Biophys Biomol Struct . 1994;  23 787-818
  • 68 Shiga T, Maeda N, Kon K. Erythrocyte rheology.  Crit Rev Oncol Hematol . 1990;  10 9-48
  • 69 Friederichs E, Meiselman H J. Effects of calcium permeabilization on RBC rheologic behavior.  Biorheology . 1994;  31 207-215
  • 70 Turchetti V, Leoncini F, De Matteis C. et al . Evaluation of erythrocyte morphology as deformability index in patients suffering from vascular diseases, with or without diabetes mellitus: correlation with blood viscosity and intra-erythrocytic calcium.  Clin Hemorheol Microcirc . 1998;  18 141-149
  • 71 Brun J F. Hormones, metabolism and body composition as major determinants of blood rheology: potential pathophysiological meaning.  Clin Hemorheol Microcirc . 2002;  26 63-79
  • 72 Mark M, Walter R, Harris L G, Reinhart W H. Influence of parathyroid hormone, calcitonin, 1,25(OH)2 cholecalciferol, calcium, and the calcium ionophore A23187 on erythrocyte morphology and blood viscosity.  J Lab Clin Med . 2000;  135 347-352
  • 73 Baskurt O K, Levi E, Temizer A. et al . In vitro effects of thyroxine on the mechanical properties of erythrocytes.  Life Sci . 1990;  46 1471-1477
  • 74 Cicco G, Carbonara M C, Stingi G D, Pirrelli A. Cytosolic calcium and hemorheological patterns during arterial hypertension.  Clin Hemorheol Microcirc . 2001;  24 25-31
  • 75 Kavanagh B D, Coffey B E, Needham D, Hochmuth R M, Dewhirst M W. The effect of flunarizine on erythrocyte suspension viscosity under conditions of extreme hypoxia, low pH, and lactate treatment.  Br J Cancer . 1993;  67 734-741
  • 76 Takakuwa Y, Ishibashi T, Mohandas N. Regulation of red cell membrane deformability and stability by skeletal protein network.  Biorheology . 1990;  27 357-365
  • 77 Takakuwa Y. Protein 4.1, a multifunctional protein of the erythrocyte membrane skeleton: structure and functions in erythrocytes and nonerythroid cells.  Int J Hematol . 2000;  72 298-309
  • 78 Friederichs E, Farley R A, Meiselman H J. Influence of calcium permeabilization and membrane-attached hemoglobin on erythrocyte deformability.  Am J Hematol . 1992;  41 170-177
  • 79 Baskurt O K. Activated granulocyte induced alterations in red blood cells and protection by antioxidant enzymes.  Clin Hemorheol . 1996;  16 49-56
  • 80 Yalcin O, Erman A, Muratl;di S, Bor-Küçükatay M, Başkurt O K. Time course of hemorheological alterations following heavy anaerobic exercise in untrained human subjects.  J Appl Physiol . 2003;  94 997-1002
  • 81 Baskurt O K, Bor-Küçükatay M, Yalcin O, Meiselman H J. Aggregation behavior and electrophoretic mobility of red blood cells in various mammalian species.  Biorheology . 2000;  37 417-428
  • 82 Bor-Küçükatay M, Yalcin O, Meiselman H J, Baskurt O K. Erythropoietin-induced rheological changes of rat erythrocytes.  Br J Haematol . 2000;  110 82-88
  • 83 Granger D N. Role of xanthine oxidase and granulocytes in ischemia reperfusion injury.  Am J Physiol . 1988;  255 H1269-H1275
  • 84 Welbourn C RB, Goldman G, Paterson I S. et al . Pathophysiology of ischaemia reperfusion injury: central role of the neutrophil.  Br J Surg . 1991;  78 651-655
  • 85 Baskurt O K, Yavuzer S. Some hematological effects of oxidants. In: Nriagu JO, Simmons MS, eds. Environmental Oxidants New York: John Wiley 1994: 405-423
  • 86 Weiss S J. The role of superoxide in the destruction of erythrocyte targets by human neutrophils.  J Biol Chem . 1980;  255 9912-9917
  • 87 Snyder L M, Fortier N, Trainor J. et al . Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking.  J Clin Invest . 1985;  76 1971-1977
  • 88 Uyesaka N, Hasegawa S, Ishioka N. et al . Effect of superoxide anions on red cell deformability and membrane proteins.  Biorheology . 1992;  29 217-229
  • 89 Ali H, Haribabu B, Richardson R M, Snyderman R. Mechanisms of inflammation and leukocyte activation.  Med Clin North Am . 1997;  81 1-28
  • 90 Downey G P, Fukushima T, Fialkow L, Waddell T K. Intracellular signaling in neutrophil priming and activation.  Semin Cell Biol . 1995;  6 345-356
  • 91 Claster S, Chiu D TY, Quintanilha A, Lubin B. Neutrophils mediate lipid peroxidation in human red cells.  Blood . 1984;  64 1079-1084
  • 92 Cokelet G R, Goldsmith H L. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates.  Circ Res . 1991;  68 1-17
  • 93 Fahraeus R. The influence of the rouleau formation of the erythrocytes on the rheology of the blood.  Acta Med Scand . 1958;  161 151-165
  • 94 McKay C B, Linderkamp O, Meiselman H J. Fahraeus and Fahraeus-Lindqvist effects for neonatal and adult RBC suspensions.  Pediatr Res . 1993;  34 538-543
  • 95 Murata T. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes.  Biorheology . 1996;  33 267-283
  • 96 Reinke W, Gaehtgens P, Johnson P C. Blood viscosity in small tubes: effect of shear rate, aggregation and sedimentation.  Am J Physiol . 1987;  253 H540-H547
  • 97 Alonso C, Pries A R, Gaehtgens P. Time-dependent rheological behavior of blood at low shear in narrow vertical tubes.  Am J Physiol . 1993;  253 H553-H561
  • 98 McKay C B, Meiselman H J. Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions.  Am J Physiol . 1988;  254 H238-H249
  • 99 Hakim T S. Eythrocyte deformability and segmental pulmonary vascular resistance: osmolarity and heat treatment.  J Appl Physiol . 1988;  65 1634-1641
  • 100 Parthasarathi K, Lipowsky H H. Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability.  Am J Physiol . 1999;  277 H2145-H2157
  • 101 Secomb T W, Hsu R. Resistance to blood flow in nonuniform capillaries.  Microcirculation . 1997;  4 421-427
  • 102 Schmid-Schönbein H. Fluid dynamics and hemorheology in vivo: the interactions of hemodynamic parameters and hemorheological "properties" in determining the flow behavior of blood in microvascular networks. In: Lowe GDO, ed. Clinical Blood Rheology Boca Raton, FL: CRC Press 1988: 129-219
  • 103 Klitzman B, Duling B R. Microvascular hematocrit and red cell flow in resting and contracting striated muscle.  Am J Physiol . 1979;  237 H481-H490
  • 104 Brizel D M, Klitzman B, Cook M. et al . A comparison of tumor and normal tissue microvascular hematocrits and red cell fluxes in a rat window chamber model.  Int J Radiat Oncol Biol Phys . 1993;  25 269-276
  • 105 Schmid-Schönbein G W, Zweifach B W. RBC velocity profiles in arterioles and venules of the rabbit omentum.  Microvasc Res . 1975;  10 153-164
  • 106 Lipowsky H H, Cram L E, Justice W, Eppihimer M J. Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability.  Microvasc Res . 1993;  46 43-64
  • 107 Baskurt O K, Edremitlioglu M, Temiz A. Effect of erythrocyte deformability on myocardial hematocrit gradient.  Am J Physiol . 1995;  37 H260-H264
  • 108 Baskurt O K, Edremitlioglu M. Myocardial tissue hematocrit: existence of a transmural gradient and alterations after fibrinogen infusions.  Clin Hemorheol . 1995;  15 97-105
  • 109 Suzuki Y, Tateishi N, Soutani M, Maeda N. Flow behavior of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformation and erythrocyte aggregation.  Int J Microcirc Clin Exp . 1996;  16 187-194
  • 110 Vicaut E. Opposite effects of red blood cell aggregation on resistance to blood flow.  J Cardiovasc Surg . 1995;  36 361-368
  • 111 Drussel J J, Berthault M F, Guiffant G, Dufaux J. Effects of red blood cell hyperaggregation on the rat microcirculation blood flow.  Acta Physiol Scand . 1998;  163 25-32
  • 112 Mchedlishvili G, Gobejishvili L, Beritashvili N. Effect of intensified red blood cell aggregability on arterial pressure and mesenteric microcirculation.  Microvasc Res . 1993;  45 233-242
  • 113 Vicaut E, Hou X, Decuypere L, Taccoen A, Duvelleroy M. Red blood cell aggregation and microcirculation in rat cremaster muscle.  Int J Microcirc Clin Exp . 1994;  14 14-21
  • 114 Charansonney O, Mouren S, Dufaux S, Duvelleroy M, Vicaut E. Red blood cell aggregation and blood viscosity in an isolated heart preparation.  Biorheology . 1993;  30 75-84
  • 115 Rogausch H. The apparent viscosity of aggregating and non-aggregating erythrocyte suspensions in the isolated perfused liver.  Biorheology . 1987;  24 163-171
  • 116 Verkeste C M, Boekkooi P F, Saxena P R, Peeters L L. Increased red cell aggregation does not reduce uteroplacental blood flow in the awake, hemoconcentrated, late-pregnant guinea pig.  Pediatr Res . 1992;  31 91-93
  • 117 Cabel M, Meiselman H J, Popel A S, Johnson P C. Contribution of red cell aggregation to venous vascular resistance in skeletal muscle.  Am J Physiol . 1997;  272 H1020-H1032
  • 118 Baskurt O K, Bor-Küçükatay M, Yalcin O. The effect of red blood cell aggregation on blood flow resistance.  Biorheology . 1999;  36 447-452
  • 119 Calver A, Collier J, Vallace P. Nitric oxide and cardiovascular control.  Exp Physiol . 1993;  78 303-326
  • 120 Fleming I, Bauersachs J, Busse R. Calcium-dependent and calcium-independent activation of the endothelial NO synthase.  J Vasc Res . 1997;  34 165-174
  • 121 Vallance P, Chan N. Endothelial function and nitric oxide: clinical relevance.  Heart . 2001;  85 342-350
  • 122 Nerem R M, Alexander R W, Chappell D C. et al . The study of the influence of flow on vascular endothelial biology.  Am J Med Sci . 1998;  316 169-175
    >