Laryngorhinootologie 2003; 82(10): 693-699
DOI: 10.1055/s-2003-43238
Rhinologie
© Georg Thieme Verlag Stuttgart · New York

In-vitro-Kultivierung von Zellen der respiratorischen Schleimhaut auf Matrizes aus Kollagen, Poly-L-Laktid (PLLA) und Polyhydroxybuttersäure (PHB)

In Vitro Culture of Cells from Respiratory Mucosa on Foils of Collagen, Poly-L-Lactide (PLLA) and Poly-3-Hydroxy-Butyrate (PHB)J.  Ostwald 1 , S.  Dommerich 1 , Claudia  Nischan 2 , B.  Kramp 1
  • 1 HNO-Klinik und Poliklinik „Otto Körner” der Universität Rostock (Direktor: Prof. Dr. H. W. Pau)
  • 2 Institut für Biomedizinische Technik der Universität Rostock (Direktor: Prof. Dr.-Ing. K.-P. Schmitz)
Further Information

Publication History

Eingegangen: 28. April 2003

Angenommen: 3. Juli 2003

Publication Date:
31 October 2003 (online)

Zusammenfassung

Hintergrund: Der Ersatz autologer respiratorischer Schleimhaut im Rahmen der Deckung von Defekten im HNO-Bereich (Trachea, Septum, Nasennebenhöhlen) erscheint aus therapeutischer Sicht notwendig.

Methode: Zellen der respiratorischen Schleimhaut wurden durch Auswachsen oder nach Dissoziation auf Materialien aus Kollagen, PLLA und PHB in serumhaltigen und serumfreien Medium kultiviert.

Ergebnis: Auf allen Materialien konnten Fibroblasten und auch Epithelzellen gezüchtet werden. PLLA stellte sich als besonders günstige Matrix dar. Auf PHB gelang Wachstum nur nach Aminofunktionalisierung mittels Plasmabehandlung. Besiedelung konnte bei Kollagenmaterialien nicht lichtmikroskopisch, sondern nur indirekt (Membranfärbung, REM) nachgewiesen werden. Eine Differenzierung der proliferierten Zellen bis zu aktiver Zilienbewegung konnte auch nach mehreren Wochen nicht gefunden werden.

Schlussfolgerungen: Die untersuchten Materialien sind in unterschiedlichem Ausmaß zur Besiedelung mit Zellen der respiratorischen Schleimhaut geeignet. Für die Entwicklung final differenzierter Epithelzellen müssen die Kulturbedingungen geändert werden.

Abstract

Background: The replacement of respiratory mucosa after surgical resections at different locations in the ENT-field (trachea, nasal septum, sinus maxillaris) seems to be essential or at least of great benefit for patients. Presently a satisfying solution for this challenge does not exist. Therefore we have analysed the growth of cells from respiratory mucosa on different matrices.

Methods: Cell cultures are initiated mainly by growing out cells from tissue pieces but also by seeding of cells after enzymatic dissociation (sequential trypsinization) of mucosa. Cells were cultured with serum-containing and serum-free media on 3 different foils: made of collagen, of Poly-L-lactic acid (PLLA) and Poly-hydroxybutyric acid (PHB). Culturing time was on average about 4 - 5 weeks.

Results: On all tested materials fibroblasts and epithelial cells have grown in principle. PLLA was the material with best properties concerning the aim of this study whereas culturing of cells on PHB only happens after surface modification by amino-functionalisation with plasma treatment. Visualisation of cells on materials of collagen could not realised by light-microscopy due to the 3-dimensional structure and the optical properties of this material. Here the cultures were analysed by cell membrane staining and by REM. We could not find a differentiation of epithelial cells with beating cilia 6 weeks after starting the culture. However 20 days after starting the culture on PLLA (good conditions for observation with light-microscope) cells with beating cilia could be observed, in our opinion resulting from dissociated cells from tissue pieces and not from proliferated cells.

Conclusions: In principle the analysed materials are useful for the culturing of cells from respiratory mucosa. However, for obtaining differentiated epithelial cells the culture conditions have to be modified.

Literatur

  • 1 Löwenheim H. Grundlagen der In-vivo-Regeneration im Kopf-Hals-Bereich.  Laryngo-Rhino-Otol. 2002;  81 (Suppl 1) 1-23
  • 2 Hauschild G, Fehr M, Uhr G, Bader A. Die zukünftige Bedeutung von tissue engineering für die Onkologie.  Onkologe. 2001;  7 1089-1096
  • 3 Jacobs J R. Investigations into tracheal prosthetic reconstruction.  Laryngoscope. 1988;  98 1239-1244
  • 4 Jorissen M, Willems T, de Boeck K. Diagnostic evaluation of mucociliary transport: from symptoms to coordinated ciliary activity after ciliogenesis in culture.  Am J Rhinol. 2000;  14 345-352
  • 5 Rettinger G. Nasenseptumpathologie. In: Berendes J, Link R, Zöllner F (Hrsg) Hals-Nasen-Ohrenheilkunde in Praxis und Klinik, Bd. 2. Stuttgart; Thieme 369-374
  • 6 Osma U, Cureoglu S, Akbulut N, Meric F, Topcu I. The results of septal button insertion in the management of nasal perforation.  J Laryngo Otol. 1999;  113 823-824
  • 7 Kridel R W, Foda H, Lunde K C. Septal perforation repair with acellular human dermal allograft.  Arch Otolaryngol Head Neck Surg. 1998;  124 73-78
  • 8 Vos G A, Patka P, Klein C P, Hoitsma H F, de Groot K. Tracheal reconstruction with hydroxyapatite tracheal prosthesis.  Life Support Syst. 1986;  4 283-287
  • 9 Okumura N, Teramachi M, Takimoto Y, Nakamura T, Ikada Y, Shimizu Y. Experimental reconstruction of the intrathoracic trachea using a new prosthesis made from collagen grafted mesh.  ASAIO J. 1994;  40 M834-839
  • 10 Sekine T, Nakamura T, Liu Y, Ueda H, Matsumoto K, Shimizu Y. Collagen coated Y-shaped prosthesis for carinal replacement promotes regeneration of the tracheal epithelium.  ASAIO J. 2000;  46 421-425
  • 11 Abdulcemal Isik U, Seren E, Kaklikkaya I, Bektas D, Imamoglu M, Muhtar H, Civelek S. Prosthetic reconstruction of the trachea in rabbit.  J Cardiovasc Surg. 2002;  43 281-286
  • 12 Yildirim G, Haliloglu T, Sapci T, Kahvecioglu O, Onar V, Savci N, Karavus A. Tracheal reconstruction with porous high-density polyethylene tracheal prosthesis.  Ann Otol Rhinol Laryngol. 2000;  109 981-987
  • 13 Schultz P, Vautier D, Chluba J, Marcellin L, Debry C. Survival analysis of rats implanted with porous titanium tracheal prosthesis.  Ann Thorac Surg. 2002;  73 1747-1751
  • 14 Kaschke O, Gerhardt H J, Bohm K, Wenzel M, Planck H. Die Epithelisierung poröser Biomaterialien mit isolierten, respiratorischen Epithelzellen in vivo.  HNO. 1995;  43 80-88
  • 15 Suh S W, Kim J, Baek C H, Kim H. Development of new tracheal prosthesis: autogenous mucosa-lined prosthesis made from polypropylene mesh.  Int J Artif Organs. 2000;  23 261-267
  • 16 Suh S W, Kim J, Baek C H, Han J, Kim H. Replacement of a tracheal defect with autogenous mucosa lined tracheal prosthesis made from polypropylene mesh.  ASAIO J. 2001;  47 496-500
  • 17 Chopra D P, Kern R C, Mathieu P A, Jacobs J R. Successful in vitro growth of human respiratory epithelium on a tracheal prosthesis.  Laryngoscope. 1992;  102 528-531
  • 18 Costantino P D, Nuss D W, Snyderman C H, Johnson J T, Friedman C D, Narayanan K, Houston G. Experimental tracheal replacement using a revascularized jejunal autograft with an implantable Dacron mesh tube.  Ann Otol Rhinol Laryngol. 1992;  101 807-814
  • 19 Bücheler M, Scheffler B, von Foerster U, Bruinink A, Bootz F, Wintermantel E. Wachstum humanen respiratorischen Epithels auf Kollagenfolie.  Laryngo-Rhino-Otol. 2000;  79 160-164
  • 20 Ross U H, Wittmann G. Living epithelial-mesenchymal compounds formed in vitro suitable for autografting.  Eur Arch Otorhinolaryngol. 1997;  254 (Suppl 1) S12-S17
  • 21 Yamaguchi T, Shin T, Sugihara H. Reconstruction of the laryngeal mucosa. A three-dimensional collagen gel matrix culture.  Arch Otolaryngol Head Neck Surg. 1996;  122 649-654
  • 22 Hard R, Besch S R, Tristram D, Han J, Hicks W Jr. Ciliary activity in differentiating and reactivated human respiratory epithelial cells.  Laryngoscope. 1999;  109 103-107
  • 23 Doolin E J, Strande L F, Sheng X, Hewitt C W. Engineering a composite neotrachea with surgical adhesives.  J Pediatr Surg. 2002;  37 1034-1037
  • 24 Rhee C S, Min Y G, Lee C H, Kwon T Y, Lee C H, Yi W J, Park K S. Ciliary beat frequency in cultured human nasal epithelial cells.  Ann Otol Rhinol Laryngol. 2001;  110 1011-1016
  • 25 Ostrowski L E, Nettesheim P. Inhibition of ciliated cell differentiation by fluid submersion.  Exp Lung Res. 1995;  21 957-970
  • 26 Hasegawa Y, Sakano S, Iwase T, Warashina H. The long-term behavior of poly-L-lactide screws in a minipig fracture model: Preliminary report.  J Biomed Mater Res. 2002;  63 679-685
  • 27 Gogolewski S, Jovanovic M, Perren S M, Dillon J G, Hughes M K. Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA).  J Biomed Mater Res. 1993;  27 1135-1148
  • 28 Hu J, Hu P, Li T, Jiang L, Chen J, Tao Z. The adhesion and seeding of NIH3T3 fibroblast on PHB surfaces.  Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2001;  18 541-543, 551
  • 29 Aframian D J, Cukierman E, Nikolovski J, Mooney D J, Yamada K M, Baum B J. The growth and morphological behavior of salivary epithelial cells on matrix protein-coated biodegradable substrata.  Tissue Eng. 2000;  6 209-216
  • 30 Lo H, Kadiyala S, Guggino S E, Leong K W. Poly(L-lactic acid) foams with cell seeding and controlled-release capacity.  J Biomed Mater Res. 1996;  30 475-484
  • 31 Zilberman M, Eberhart R C, Schwade N D. In vitro study of drug-loaded bioresorbable films and support structures.  J Biomater Sci Polym Ed. 2002;  13 1221-1240

Dr. rer. nat. Jürgen Ostwald

Universität Rostock · HNO-Klinik

Doberanerstraße 137 · 18057 Rostock ·

Email: juergen.ostwald@med.uni-rostock.de

    >