Synlett 2003(6): 0841-0844
DOI: 10.1055/s-2003-38742
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Heck Reaction of Vinyl Bromides with Alkenes in the Presence of a Tetra­phosphine/Palladium Catalyst

Florian Berthiol, Henri Doucet*, Maurice Santelli*
Laboratoire de Synthèse Organique associé au CNRS, Faculté des Sciences de Saint Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
Fax: +33(4)91983865; e-Mail: henri.doucet@univ.u-3mrs.fr; e-Mail: m.santelli@univ.u-3mrs.fr ;
Further Information

Publication History

Received 4 March 2003
Publication Date:
17 April 2003 (online)

Abstract

Through the use of [PdCl(C3H5)]2-cis,cis,cis-1,2,3,4-tetrakis(diphenylphosphinomethyl)cyclopentane as a catalyst, a range of vinyl bromides undergo Heck reaction with a wide variety of alkenes leading selectively to the corresponding 1,3-dienes in good yields. Furthermore, it can be used at low loading even for reactions of sterically hindered vinyl bromides.

    References

  • For reviews on the palladium-catalysed Heck reaction see:
  • 1a Heck RF. Palladium Reagents in Organic Syntheses   Katritzky AR. Meth-Cohn O. Rees CW. Academic Press; London: 1985.  p.2 
  • 1b Heck RF. Vinyl Substitution with Organopalladium Intermediates, in Comprehensive Organic Synthesis   Vol. 4:  Trost BM. Fleming I. Pergamon; Oxford: 1991. 
  • 1c de Meijere A. Meyer F. Angew. Chem., Int. Ed. Engl.  1994,  33:  2379 
  • 1d Malleron J.-L. Fiaud J.-C. Legros J.-Y. Handbook of Palladium-Catalysed Organic Reactions   Academic Press; London: 1997. 
  • 1e Reetz MT. Transition Metal Catalysed Reactions   Davies SG. Murahashi S.-I. Blackwell Sci.; Oxford: 1999. 
  • 1f Beletskaya I. Cheprakov A. Chem. Rev.  2000,  100:  3009 
  • 1g Withcombe N. Hii Mimi KK. Gibson S. Tetrahedron  2001,  57:  7449 
  • 1h Littke A. Fu G. Angew. Chem. Int. Ed.  2002,  41:  4176 
  • For examples of Heck reactions with vinyl halides:
  • 2a Dieck H. Heck R. J. Org. Chem.  1975,  40:  1083 
  • 2b Patel B. Heck R. J. Org. Chem.  1978,  43:  3898 
  • 2c Patel B. Kao L.-C. Cortese N. Minkiewicz J. Heck R. J. Org. Chem.  1979,  44:  918 
  • 2d Kao L.-C. Stakem G. Patel B. Heck R. J. Org. Chem.  1982,  47:  1267 
  • 2e Fischetti W. Mak T. Stakem G. Kim J.-I. Rheingold A. Heck R. J. Org. Chem.  1983,  48:  948 
  • 2f Mitsudo T.-A. Fischetti W. Heck R. J. Org. Chem.  1984,  49:  1640 
  • 2g Jeffery T. Tetrahedron Lett.  1985,  26:  2667 
  • 2h Larock R. Gong W. J. Org. Chem.  1989,  544:  2047 
  • 2i Jeffery T. J. Chem. Soc., Chem. Commun.  1991,  324 
  • 2j Lu X. Huang X. Ma S. Tetrahedron Lett.  1992,  33:  2535 
  • 2k Jeffery T. Tetrahedron Lett.  1993,  34:  1133 
  • 2l Zhang X.-P. Schlosser M. Tetrahedron Lett.  1993,  34:  1925 
  • 2m Crisp G. Glink P. Tetrahedron  1994,  50:  2623 
  • 2n Voigt K. von Zezschwitz P. Rosauer K. Lansky A. Adams A. Reiser O. de Meijere A. Eur. J. Org. Chem.  1998,  1521 
  • For recent examples of Heck reactions catalysed by palladacycles, see:
  • 3a Herrmann WA. Brossmer C. Öfele K. Reisinger C. Riermeier T. Beller M. Fisher H. Angew. Chem., Int. Ed. Engl.  1995,  34:  1844 
  • 3b Herrmann WA. Brossmer C. Reisinger C. Riermeier T. Öfele K. Beller M. Chem. Eur. J.  1997,  3:  1357 
  • 3c Ohff M. Ohff A. Boom M. Milstein D. J. Am. Chem. Soc.  1997,  119:  11687 
  • 3d Albisson D. Bedford R. Scully PN. Tetrahedron Lett.  1998,  39:  9793 
  • 3e Ohff M. Ohff A. Milstein D. Chem. Commun.  1999,  357 
  • 3f Miyazaki F. Yamaguchi K. Shibasaki M. Tetrahedron Lett.  1999,  40:  7379 
  • 3g Bergbreiter D. Osburn P. Liu Y.-S. J. Am. Chem. Soc.  1999,  121:  9531 
  • 3h Gai X. Grigg R. Ramzan I. Sridharan V. Collard S. Muir J. Chem. Commun.  2000,  2053 
  • 3i Gibson S. Foster D. Eastham D. Tooze R. Cole-Hamilton D. Chem. Commun.  2001,  779 
  • 3j Iyer S. Jayanthi A. Tetrahedron Lett.  2001,  42:  7877 
  • 4a Gruber A. Zim D. Ebeling G. Monteiro A. Dupont J. Org. Lett.  2000,  2:  1287 
  • 4b Littke A. Fu G. J. Am. Chem. Soc.  2001,  123:  6989 
  • 5 For a review on the synthesis of polypodal diphenyl-phosphine ligands, see: Laurenti D. Santelli M. Org. Prep. Proc. Int.  1999,  31:  245 
  • 6 Laurenti D. Feuerstein M. Pèpe G. Doucet H. Santelli M. J. Org. Chem.  2001,  66:  1633 
  • 7a Feuerstein M. Laurenti D. Bougeant C. Doucet H. Santelli M. Chem. Commun.  2001,  325 
  • 7b Feuerstein M. Laurenti D. Doucet H. Santelli M. Synthesis  2001,  2320 
  • 8a Feuerstein M. Doucet H. Santelli M. J. Org. Chem.  2001,  66:  5923 
  • 8b Feuerstein M. Doucet H. Santelli M. Synlett  2001,  1980 
  • 8c Feuerstein M. Doucet H. Santelli M. Tetrahedron Lett.  2002,  43:  2191 
  • 8d Berthiol F. Feuerstein M. Doucet H. Santelli M. Tetrahedron Lett.  2002,  43:  5625 
  • 8e Berthiol F. Doucet H. Santelli M. Tetrahedron Lett.  2003,  44:  1221 
9

As a typical experiment, the reaction of β-bromostyrene (1.83 g, 10 mmol), n-butyl acrylate (2.56 g, 20 mmol) and K2CO3 (2.8 g, 20 mmol) at 130 °C during 20 h in anhydrous DMF (10 mL) in the presence of cis,cis,cis-1,2,3,4-tetrakis(diphenylphosphinomethyl) cyclopentane/[PdCl(C3H5)]2 complex (0.0001 mmol) under argon affords the corresponding adduct after extraction with dichloro-methane, evaporation and filtration on silica gel (pentane/diethyl ether: 1/1) in 66% (1.52 g) isolated yield. n-Butyl (E,E)-5-phenylpenta-2,4-dienoate, 1H NMR (300 MHz, CDCl3): δ = 7.45 (d, J = 7.4 Hz, 2 H, Ph), 7.45-7.25 (m, 4 H, Ph and =CH), 6.89 (m, 2 H, =CH), 5.98 (d, J = 15.3 Hz, 1 H, =CH), 4.15 (t, J = 6.6 Hz, 2 H, CH2), 1.65 (m, 2 H, CH2), 1.40 (m, 2 H, CH2), 0.94 (t, J = 7.4 Hz, 1 H, Me).

10

1H NMR (300 MHz, CDCl3) of selected products: Entry 17: δ = 7.50-7.15 (m, 5 H, Ph), 6.75 (dd, J = 10.9, 15.7 Hz, 1 H, =CH), 6.43 (d, J = 15.7 Hz, 1 H, =CH), 6.19 (dd, J = 10.9, 15.1 Hz, 1 H, =CH), 5.82 (dt, J = 15.1, 7.0 Hz, 1 H, =CH), 1.50-1.15 (m, 12 H, 6 CH2), 1.15 (m, 2 H, CH2), 0.88 (t, J = 6.8 Hz, 3 H, CH3); Entry 24: δ = 7.40 (d, J = 7.7 Hz, 2 H, Ph), 7.29 (t, J = 7.2 Hz, 2 H, Ph), 7.17 (t, J = 7.2 Hz, 1 H, Ph), 6.74 (d, J = 16.2 Hz, 1 H, =CH), 6.47 (d, J = 16.2 Hz, 1 H, =CH), 5.86 (t, J = 8.3 Hz, 1 H, =CH), 2.51 (m, 2 H, CH2), 2.25 (m, 2 H, CH2), 1.70-1.40 (m, 8 H, 4 CH2); Entry 26:
δ = 7.32 (d, J = 15.9 Hz, 1 H, =CH) 5.93 (d, J = 15.9 Hz, 1 H, =CH), 5.36 (s, 1 H, =CH2), 5.33 (s, 1 H, =CH2), 4.15 (t,
J = 6.8 Hz, 2 H, CH2), 2.24 (q, J = 7.3 Hz, 2 H, CH2), 1.42 (m, 2 H, CH2), 1.65 (m, 2 H, CH2), 1.11 (t, J = 7.3 Hz, 3 H, CH3), 0.94 (t, J = 7.3 Hz, 3 H, CH3); Entry 29: δ = 7.34 (d, J = 8.7 Hz, 2 H, Ar), 6.86 (d, J = 8.7 Hz, 2 H, Ar), 6.70 (d, J = 16.2 Hz, 1 H, =CH), 6.53 (d, J = 16.2 Hz, 1 H, =CH), 5.07 (s, 1 H, =CH2), 5.01 (s, 1 H, =CH2), 3.80 (s, 3 H, OMe), 2.34 (q, J = 7.3 Hz, 2 H, CH2), 1.15 (t, J = 7.3 Hz, 3 H, CH3); Entry 30: δ = 7.58 (d, J = 8.5 Hz, 2 H, Ar), 7.48 (d, J = 8.5 Hz, 2 H, Ar), 6.90 (d, J = 16.4 Hz, 1 H, =CH), 6.55 (d, J = 16.4 Hz, 1 H, =CH), 5.22 (s, 1 H, =CH2), 5.19 (s, 1 H, =CH2), 2.36 (q, J = 7.3 Hz, 2 H, CH2), 1.16 (t, J = 7.3 Hz, 3 H, CH3); Entry 32: δ = 8.52 (m, 2 H, Ar), 7.26 (m, 2 H, Ar), 6.99 (d,
J = 16.4 Hz, 1 H, =CH), 6.47 (d, J = 16.4 Hz, 1 H, =CH), 5.23 (s, 1 H, =CH2), 5.20 (s, 1 H, =CH2), 2.34 (q, J = 7.3 Hz, 2 H, CH2), 1.16 (t, J = 7.3 Hz, 3 H, CH3); Entry 33: δ = 7.54 (dd, J = 11.7, 15.2 Hz, 1 H, =CH), 5.97 (d, J = 11.7 Hz, 1 H, =CH), 5.75 (d, J = 15.2 Hz, 1 H, =CH), 4.15 (t, J = 6.8 Hz, 2 H, CH2), 1.88 (s, 3 H, CH3), 1.86 (s, 3 H, CH3), 1.65 (m, 2 H, CH2), 1.40 (m, 2 H, CH2), 0.94 (t, J = 7.3 Hz, 3 H, CH3); Entry 37: δ = 8.51 (m, 2 H, Ar), 7.15 (m, 2 H, Ar), 7.17 (dd, J = 11.0 Hz, 15.5 Hz, 1 H, =CH), 6.32 (d, J = 15.5 Hz, 1 H, =CH), 6.02 (d, J = 11.0 Hz, 1 H, =CH), 1.88 (s, 3 H, CH3), 1.87 (s, 3 H, CH3); Entry 38: δ = 7.86 (d, J = 15.5 Hz, 1 H, =CH), 5.77 (d, J = 15.5 Hz, 1 H, =CH), 4.15 (q, J = 6.8 Hz, 2 H, CH2), 1.95 (s, 3 H, CH3), 1.86 (s, 3 H, CH3), 1.78 (s, 3 H, CH3), 1.65 (m, 2 H, CH2), 1.40 (m, 2 H, CH2), 0.94 (t,
J = 7.3 Hz, 3 H, CH3); Entry 41: δ = 8.51 (m, 2 H, Ar), 7.48 (d, J = 15.9 Hz, 1 H, =CH), 7.25 (m, 2 H, Ar), 6.35 (d, J = 15.9 Hz, 1 H, = CH), 1.96 (s, 3 H, CH3), 1.88 (s, 6 H, 2 CH3); Entry 42: δ = 7.41 (d, J = 7.4 Hz, 2 H, Ph); 7.31 (t, J = 7.4 Hz, 2 H, Ph), 7.23 (t, J = 7.4 Hz, 1 H, Ph), 6.81 (d, J = 16.2 Hz, 1 H, =CH), 6.60 (d, J = 16.2 Hz, 1 H, =CH), 5.26 (s, 1 H, =CH2), 5.14 (s, 1 H, =CH2), 3.82 (t, J = 6.5 Hz, 2 H, CH2), 2.64 (t, J = 6.5 Hz, 2 H, CH2).