Thromb Haemost 2023; 123(09): 892-903
DOI: 10.1055/s-0043-57017
Cellular Haemostasis and Platelets

Platelet-Released Extracellular Vesicle Characteristics Differ in Chronic and in Acute Heart Disease

1   Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
2   Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
,
3   Cardiology Department, Hospital Universitario de San Juan, Alicante, Spain
4   Unidad de Investigación en Cardiología, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
5   Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
,
5   Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
6   Heart Failure Group, Cardiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
,
1   Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
,
1   Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
,
1   Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
5   Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
,
1   Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
5   Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
7   UAB-Chair Cardiovascular Research, Barcelona, Spain
› Author Affiliations
Funding This work was supported by the Spanish Society of Cardiology [“SEC-2016” to L.B.; “Investigación Clínica 2017” to A.C.]; Spanish Ministry of Economy and Competitiveness of Science “Agencia Estatal de Investigación (AEI)” Proj Ref AEI / 10.13039/501100011033-[PID2019-107160RB-I00] to L.B.; Institute of Health Carlos III (ISCIII) [Red RICORS TERAV- RD21/0017/0013 to L.B.; FIS PI19/01687 to T.P.]; CIBERCV to L.B. and A.C., Sociedad Valenciana de Cardiología 2017 to A.C.; and cofounded by FEDER “Una Manera de Hacer Europa.” We thank Fundación Jesus Serra and Fundación de Investigación Cardiovascular (Barcelona, Spain) for their continuous support. A.V.-F. and N.M.-G. are the recipients of a research contract from the Cardiovascular Program-ICCC (IR-HSCSP). R.S. is the recipient of a Beatriu de Pinós Fellowship [2019BP00211] from the University and Research Grants Management Agency (Government of Catalonia) co-funded by COFUND-Marie Skłodowska-Curie Actions in the Horizon 2020 program (European Commission, contract number 801370).


Abstract

Background Extracellular vesicles (EVs), shed in response to cell activation, stress, or injury, are increased in the blood of patients with cardiovascular disease. EVs are characterized by expressing parental-cell antigens, allowing the determination of their cellular origin. Platelet-derived EVs (pEVs) are the most abundant in blood. Although not universally given, EVs generally express phosphatidylserine (PS) in their membrane.

Objectives To investigate pEVs in chronic and acute conditions, such as chronic heart failure (CHF) and first-onset acute coronary syndrome (ACS), in patients treated as per guidelines.

Methods EVs in CHF patients (n = 119), ACS patients (n = 58), their respective controls (non-CHF [n = 21] and non-ACS [n = 24], respectively), and a reference control group (n = 31) were characterized and quantified by flow cytometry, using monoclonal antibodies against platelet antigens, and annexin V (AV) to determine PS exposure.

Results CHF patients had higher EVs-PS numbers, while ACS had predominantly EVs-PS+. In contrast to ACS, CHF patients had significantly reduced numbers of pEVs carrying PECAM and αIIb-integrin epitopes (CD31+/AV+, CD41a+/AV+, and CD31+/CD41a+/AV+), while no differences were observed in P-selectin-rich pEVs (CD62P+/AV+) compared with controls. Additionally, background etiology of CHF (ischemic vs. nonischemic) or ACS type (ST-elevation myocardial infarction [STEMI] vs. non-STEMI [NSTEMI]) did not affect pEV levels.

Conclusion PS exposure in EV and pEV-release differ between CHF and ACS patients, with tentatively different functional capacities beyond coagulation to inflammation and cross-talk with other cell types.

Authors' Contribution

L.B., T.P., S.M., and A.C. designed the research. A.V.-F. performed experiments. A.V.-F., T.P., and L.B. analyzed the results. A.V.-F., N.M.-G., A.C., R.S., S.M., T.P., and L.B. wrote and revised the manuscript.




Publication History

Received: 01 December 2022

Accepted: 14 March 2023

Article published online:
19 April 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol 2019; 16 (03) 166-179
  • 2 Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res 2018; 122 (02) 337-351
  • 3 Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med 2014; 276 (06) 618-632
  • 4 Kamran H, Jneid H, Kayani WT. et al. Oral antiplatelet therapy after acute coronary syndrome: a review. JAMA 2021; 325 (15) 1545-1555
  • 5 Ajjan RA, Kietsiriroje N, Badimon L. et al. Antithrombotic therapy in diabetes: which, when, and for how long?. Eur Heart J 2021; 42 (23) 2235-2259
  • 6 Badimon L, Vilahur G, Rocca B, Patrono C. The key contribution of platelet and vascular arachidonic acid metabolism to the pathophysiology of atherothrombosis. Cardiovasc Res 2021; 117 (09) 2001-2015
  • 7 Gulati M, Levy PD, Mukherjee D. et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021; 144 (22) e368-e454
  • 8 van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19 (04) 213-228
  • 9 Boulanger CM, Loyer X, Rautou P-E, Amabile N. Extracellular vesicles in coronary artery disease. Nat Rev Cardiol 2017; 14 (05) 259-272
  • 10 Badimon L, Padro T, Arderiu G, Vilahur G, Borrell-Pages M, Suades R. Extracellular vesicles in atherothrombosis: from biomarkers and precision medicine to therapeutic targets. Immunol Rev 2022; 312 (01) 6-19
  • 11 Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30: 255-289
  • 12 Morel O, Jesel L, Freyssinet J-M, Toti F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 2011; 31 (01) 15-26
  • 13 Connor DE, Exner T, Ma DDF, Joseph JE. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb Haemost 2010; 103 (05) 1044-1052
  • 14 Arraud N, Linares R, Tan S. et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost 2014; 12 (05) 614-627
  • 15 Arraud N, Gounou C, Turpin D, Brisson AR. Fluorescence triggering: a general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry. Cytometry A 2016; 89 (02) 184-195
  • 16 Sinauridze EI, Kireev DA, Popenko NY. et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97 (03) 425-434
  • 17 Zarà M, Guidetti GF, Camera M. et al. Biology and role of extracellular vesicles (EVs) in the pathogenesis of thrombosis. Int J Mol Sci 2019; 20 (11) 2840
  • 18 Suades R, Padró T, Vilahur G, Badimon L. Circulating and platelet-derived microparticles in human blood enhance thrombosis on atherosclerotic plaques. Thromb Haemost 2012; 108 (06) 1208-1219
  • 19 Brisson AR, Tan S, Linares R, Gounou C, Arraud N. Extracellular vesicles from activated platelets: a semiquantitative cryo-electron microscopy and immuno-gold labeling study. Platelets 2017; 28 (03) 263-271
  • 20 Badimon L, Suades R, Vilella-Figuerola A. et al. Liquid biopsies: microvesicles in cardiovascular disease. Antioxid Redox Signal 2020; 33 (09) 645-662
  • 21 Suades R, Padró T, Alonso R, Mata P, Badimon L. High levels of TSP1+/CD142+ platelet-derived microparticles characterise young patients with high cardiovascular risk and subclinical atherosclerosis. Thromb Haemost 2015; 114 (06) 1310-1321
  • 22 Suades R, Padró T, Vilahur G, Badimon L. Platelet-released extracellular vesicles: the effects of thrombin activation. Cell Mol Life Sci 2022; 79 (03) 190
  • 23 Suades R, Padró T, Crespo J. et al. Liquid biopsy of extracellular microvesicles predicts future major ischemic events in genetically characterized familial hypercholesterolemia patients. Arterioscler Thromb Vasc Biol 2019; 39 (06) 1172-1181
  • 24 Liu Y, He Z, Zhang Y. et al. Dissimilarity of increased phosphatidylserine-positive microparticles and associated coagulation activation in acute coronary syndromes. Coron Artery Dis 2016; 27 (05) 365-375
  • 25 Steppich B, Mattisek C, Sobczyk D, Kastrati A, Schömig A, Ott I. Tissue factor pathway inhibitor on circulating microparticles in acute myocardial infarction. Thromb Haemost 2005; 93 (01) 35-39
  • 26 Sionis A, Suades R, Sans-Roselló J. et al. Circulating microparticles are associated with clinical severity of persistent ST-segment elevation myocardial infarction complicated with cardiogenic shock. Int J Cardiol 2018; 258: 249-256
  • 27 Badimon L, Suades R, Fuentes E, Palomo I, Padró T. Role of platelet-derived microvesicles as crosstalk mediators in atherothrombosis and future pharmacology targets: a link between inflammation, atherosclerosis, and thrombosis. Front Pharmacol 2016; 7: 293
  • 28 Suades R, Padró T, Crespo J. et al. Circulating microparticle signature in coronary and peripheral blood of ST elevation myocardial infarction patients in relation to pain-to-PCI elapsed time. Int J Cardiol 2016; 202: 378-387
  • 29 Zhang Y, Liu X, Liu L. et al. Contact- and agonist-regulated microvesiculation of human platelets. Thromb Haemost 2013; 110 (02) 331-339
  • 30 Behan MWH, Fox SC, Heptinstall S, Storey RF. Inhibitory effects of P2Y12 receptor antagonists on TRAP-induced platelet aggregation, procoagulant activity, microparticle formation and intracellular calcium responses in patients with acute coronary syndromes. Platelets 2005; 16 (02) 73-80
  • 31 Schrick D, Molnár T, Tőkés-Füzesi M, Molnár A, Ezer E. Circulating microvesicles in convalescent ischemic stroke patients: a contributor to high-on-treatment residual platelet reactivity?. Front Biosci 2022; 27 (05) 158
  • 32 Suades R, Padró T, Alonso R, Mata P, Badimon L. Lipid-lowering therapy with statins reduces microparticle shedding from endothelium, platelets and inflammatory cells. Thromb Haemost 2013; 110 (02) 366-377
  • 33 Vilella-Figuerola A, Padró T, Roig E, Mirabet S, Badimon L. New factors in heart failure pathophysiology: immunity cells release of extracellular vesicles. Front Cardiovasc Med 2022; 9: 939625
  • 34 Nieuwland R, Berckmans RJ, McGregor S. et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 2000; 95 (03) 930-935
  • 35 Diaz-Riera E, García-Arguinzonis M, López L, Garcia-Moll X, Badimon L, Padró T. Vitamin D binding protein and renal injury in acute decompensated heart failure. Front Cardiovasc Med 2022; 9: 829490
  • 36 Bazzan E, Tinè M, Casara A. et al. Critical review of the evolution of extracellular vesicles' knowledge: from 1946 to today. Int J Mol Sci 2021; 22 (12) 6417
  • 37 Puhm F, Boilard E, Machlus KR. Platelet extracellular vesicles: beyond the blood. Arterioscler Thromb Vasc Biol 2021; 41 (01) 87-96
  • 38 Garcia S, Chirinos J, Jimenez J. et al. Phenotypic assessment of endothelial microparticles in patients with heart failure and after heart transplantation: switch from cell activation to apoptosis. J Heart Lung Transplant 2005; 24 (12) 2184-2189
  • 39 Berezin AE, Kremzer AA, Berezina TA, Martovitskaya YV. Pattern of circulating microparticles in chronic heart failure patients with metabolic syndrome: relevance to neurohumoral and inflammatory activation. BBA Clin 2015; 4: 69-75
  • 40 Lundström A, Mobarrez F, Rooth E. et al. Prognostic value of circulating microvesicle subpopulations in ischemic stroke and TIA. Transl Stroke Res 2020; 11 (04) 708-719
  • 41 Arauna D, Chiva-Blanch G, Padró T, Fuentes E, Palomo I, Badimon L. Frail older adults show a distinct plasma microvesicle profile suggesting a prothrombotic and proinflammatory phenotype. J Cell Physiol 2021; 236 (03) 2099-2108
  • 42 Vikerfors A, Mobarrez F, Bremme K. et al. Studies of microparticles in patients with the antiphospholipid syndrome (APS). Lupus 2012; 21 (07) 802-805
  • 43 Nielsen CT, Østergaard O, Johnsen C, Jacobsen S, Heegaard NH. Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus. Arthritis Rheum 2011; 63 (10) 3067-3077
  • 44 Mobarrez F, Vikerfors A, Gustafsson JT. et al. Microparticles in the blood of patients with systemic lupus erythematosus (SLE): phenotypic characterization and clinical associations. Sci Rep 2016; 6: 36025
  • 45 Skeppholm M, Mobarrez F, Malmqvist K, Wallén H. Platelet-derived microparticles during and after acute coronary syndrome. Thromb Haemost 2012; 107 (06) 1122-1129
  • 46 Bergen K, Mobarrez F, Jörneskog G, Wallén H, Tehrani S. Phosphatidylserine expressing microvesicles in relation to microvascular complications in type 1 diabetes. Thromb Res 2018; 172: 158-164
  • 47 Badimon L, Suades R, Arderiu G, Peña E, Chiva-Blanch G, Padró T. Microvesicles in atherosclerosis and angiogenesis: from bench to bedside and reverse. Front Cardiovasc Med 2017; 4: 77
  • 48 Italiano Jr JE, Mairuhu ATA, Flaumenhaft R. Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol 2010; 17 (06) 578-584
  • 49 Berezin AE, Kremzer AA, Martovitskaya YV, Samura TA, Berezina TA. The predictive role of circulating microparticles in patients with chronic heart failure. BBA Clin 2014; 3: 18-24
  • 50 Kou Y, Zou L, Liu R. et al. Intravascular cells and circulating microparticles induce procoagulant activity via phosphatidylserine exposure in heart failure. J Thromb Thrombolysis 2019; 48 (02) 187-194
  • 51 Dasgupta SK, Guchhait P, Thiagarajan P. Lactadherin binding and phosphatidylserine expression on cell surface-comparison with annexin A5. Transl Res 2006; 148 (01) 19-25
  • 52 Munnix ICA, Kuijpers MJE, Auger J. et al. Segregation of platelet aggregatory and procoagulant microdomains in thrombus formation: regulation by transient integrin activation. Arterioscler Thromb Vasc Biol 2007; 27 (11) 2484-2490
  • 53 Gkaliagkousi E, Gavriilaki E, Yiannaki E. et al. Platelet microvesicles are associated with the severity of coronary artery disease: comparison between peripheral and coronary circulation. J Thromb Thrombolysis 2021; 51 (04) 1138-1143
  • 54 Chiva-Blanch G, Laake K, Myhre P. et al. Platelet-, monocyte-derived and tissue factor-carrying circulating microparticles are related to acute myocardial infarction severity. PLoS One 2017; 12 (02) e0172558
  • 55 Hartopo AB, Puspitawati I, Gharini PPR, Setianto BY. Platelet microparticle number is associated with the extent of myocardial damage in acute myocardial infarction. Arch Med Sci 2016; 12 (03) 529-537
  • 56 Thulin Å, Christersson C, Alfredsson J, Siegbahn A. Circulating cell-derived microparticles as biomarkers in cardiovascular disease. Biomarkers Med 2016; 10 (09) 1009-1022
  • 57 Li D, Lai W, Fan D, Fang Q. Protein biomarkers in breast cancer-derived extracellular vesicles for use in liquid biopsies. Am J Physiol Cell Physiol 2021; 321 (05) C779-C797