Int J Sports Med 2017; 38(11): 819-826
DOI: 10.1055/s-0043-112342
Physiology & Biochemistry
© Georg Thieme Verlag KG Stuttgart · New York

Performance Factors in a Mountain Ultramarathon

Pascal Balducci
1   Univ Lyon – University Claude Bernard Lyon 1, EA 7424 – Inter-university Laboratory of Human Movement Science
,
Michel Clémençon
1   Univ Lyon – University Claude Bernard Lyon 1, EA 7424 – Inter-university Laboratory of Human Movement Science
,
Robin Trama
1   Univ Lyon – University Claude Bernard Lyon 1, EA 7424 – Inter-university Laboratory of Human Movement Science
,
Yoann Blache
1   Univ Lyon – University Claude Bernard Lyon 1, EA 7424 – Inter-university Laboratory of Human Movement Science
,
Christophe Hautier
1   Univ Lyon – University Claude Bernard Lyon 1, EA 7424 – Inter-university Laboratory of Human Movement Science
› Author Affiliations
Further Information

Publication History



accepted 18 May 2017

Publication Date:
10 August 2017 (online)

Abstract

This study aimed to determine mountain ultra-marathon (MUM) performance factors in a large group of endurance mountain runners. Maximal aerobic speed (MAS) was assessed one week prior to the MUM. The level and graded (10%) energy cost of running, stiffness, knee extensors force (KEf), and jump height on a counter movement jump (CMJ) were measured in 24 male ultra runners before (pre) and immediately after (post) the Interlacs Trail (75 km and 3 930/3 700 m d+/d−). Performance time was correlated with MAS (r=− 0.74, p<0.001), fraction of MAS (FMAS) sustained (r=− 0.89, p<0.001), KEf (r=− 0.51, p<0.05), and KEf loss (r=− 0.51, p<0.05). A multiple regression analysis was performed using performance time in minutes (T) and the calculated individual characteristics, resulting in T=− 11.852×FMAS−37.195×MAS−0.118×KEf+2090.581 (R2=0.98, with 95% confidence interval). Contrary to expectations, performance was neither correlated to the level or uphill energy cost of running nor to the changes of these costs post-MUM. To perform in a MUM, training should take into account muscle strength of the KE, MAS and FMAS.

 
  • References

  • 1 Balducci P, Clémençon M, Morel B, Quiniou G, Saboul D, Hautier CA. Comparison of level and graded treadmill tests to evaluate endurance mountain runners. J Sports Sci Med 2016; 15: 239-246
  • 2 Barnes KR, Kilding AE. Running economy: Measurement, norms, and determining factors. Sports Med 2015; 1: 1-15
  • 3 Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 14: 377-381
  • 4 Castagna C, Castellini E. Vertical jump performance in Italian male and female national team soccer players. J Strength Cond Res 2013; 27: 1156-1161
  • 5 Cazorla G, Léger L. Comment évaluer et développer vos capacités aérobies: épreuves de course navette et épreuve Vam-Eval. In: Paris: AREAPS; 1993: 123
  • 6 Costill DL. Metabolic responses during distance running. J Appl Physiol 1970; 28: 251-255
  • 7 Dalleau G, Belli A, Viale F, Lacour JR, Bourdin M. A simple method for field measurements of leg stiffness in hopping. Int J Sports Med 2004; 25: 170-176
  • 8 Denadai BS, de Aguiar RA, de Lima LCR, Greco CC, Caputo F. Explosive training and heavy weight training are effective for improving running economy in endurance athletes: A systematic review and meta-analysis. Sports Med 2017; 47: 545-554
  • 9 di Prampero PE, Atchou G, Bruckner JC, Moia C. The energetics of endurance running. Eur J Appl Physiol 1986; 55: 259-266
  • 10 di Prampero PE, Salvadego D, Fusi S, Grassi B. A simple method for assessing the energy cost of running during incremental tests. J Appl Physiol 2009; 107: 1068-1075
  • 11 Dias JA, Dal Pupo J, Reis DC, Borges L, Santos SG, Moro AR, Borges Jr NG. Validity of two methods for estimation of vertical jump height. J Strength Cond Res 2011; 25: 2034-2039
  • 12 Docherty D, Robbins D, Hodgson M. Complex training revisited: a review of its current status as a viable training approach. Strength Cond J 2004; 26: 52-57
  • 13 Giandolini M, Vernillo G, Samozino P, Horvais N, Edwards WB, Morin J-B, Millet GY. Fatigue associated with prolonged graded running. Eur J Appl Physiol 2016; 10: 1-15
  • 14 Gimenez P, Kerhervé H, Messonnier LA, Féasson L, Millet GY. Changes in the energy cost of running during a 24-h treadmill exercise. Med Sci Sports Exerc 2013; 45: 1807-1813
  • 15 Giovanelli N, Ortiz ALR, Henninger K, Kram R. Energetics of vertical kilometer foot races; is steeper cheaper?. J Appl Physiol 2016; 120: 370-375
  • 16 Giovanelli N, Taboga P, Rejc E, Simunic B, Antonutto G, Lazzer S. Effects of an uphill marathon on running mechanics and lower-limb muscle fatigue. Int J Sports Physiol Perform 2016; 11: 522-529
  • 17 Harriss D, Atkinson G. Ethical standards in sport and exercise science research: 2016 update. Int J Sports Med 2015; 36: 1121-1124
  • 18 Impellizzeri FM, Maffiuletti NA. Convergent evidence for construct validity of a 7-point likert scale of lower limb muscle soreness. Clin J Sport Med 2007; 17: 494-496
  • 19 Lazzer S, Salvadego D, Rejc E, Buglione A, Antonutto G, Di Prampero PE. The energetics of ultra-endurance running. Eur J Appl Physiol 2012; 112: 1709-1715
  • 20 Lazzer S, Salvadego D, Taboga P, Rejc E, Giovanelli N, di Prampero PE. Effects of the Etna uphill ultramarathon on energy cost and mechanics of running. Int J Sports Physiol Perform 2015; 10: 238-247
  • 21 Lazzer S, Taboga P, Salvadego D, Rejc E, Simunic B, Narici MV, Buglione A, Giovanelli N, Antonutto G, Grassi B. Factors affecting metabolic cost of transport during a multi-stage running race. J Exp Biol 2014; 217: 787-795
  • 22 Lienhard K, Schneider D, Maffiuletti NA. Validity of the Optogait photoelectric system for the assessment of spatiotemporal gait parameters. Med Eng Phys 2013; 35: 500-504
  • 23 Macfarlane D, Wong P. Validity, reliability and stability of the portable Cortex Metamax 3B gas analysis system. Eur J Appl Physiol 2012; 112: 2539-2547
  • 24 Margaria R, Cerretelli P, Aghemo P, Sassi G. Energy cost of running. J Appl Physiol 1963; 18: 367-370
  • 25 Markovic G, Dizdar D, Jukic I, Cardinale M. Reliability and factorial validity of squat and countermovement jump tests. J Strength Cond Res 2004; 18: 551-555
  • 26 Medbo JI, Mohn AC, Tabata I, Bahr R, Vaage O, Sejersted OM. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol 1988; 64: 50-60
  • 27 Millet GP. Economy is not sacrificed in ultramarathon runners. J Appl Physiol 2012; 113: 686-686
  • 28 Millet GY. Can neuromuscular fatigue explain running strategies and performance in ultra-marathons?. Sports Med 2011; 41: 489-506
  • 29 Millet GY, Banfi J, Kerherve H, Morin J, Vincent L, Estrade C, Geyssant A, Feasson L. Physiological and biological factors associated with a 24 h treadmill ultra–marathon performance. Scand J Med Sci Sports 2011; 21: 54-61
  • 30 Millet GY, Hoffman MD, Morin J-B. Sacrificing economy to improve running performance—a reality in the ultramarathon?. J Appl Physiol 2012; 113: 507-509
  • 31 Millet GY, Lepers R, Lattier G, Martin V, Babault N, Maffiuletti N. Influence of ultra-long-term fatigue on the oxygen cost of two types of locomotion. Eur J Appl Physiol 2000; 83: 376-380
  • 32 Millet GY, Lepers R, Maffiuletti N, Babault N, Martin V, Lattier G. Alterations of neuromuscular function after an ultramarathon. J Appl Physiol 2002; 92: 486-492
  • 33 Millet GY, Tomazin K, Verges S, Vincent C, Bonnefoy R, Boisson R-C, Gergelé L, Féasson L, Martin V. Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS One 2011; 6: e17059
  • 34 Minetti AE, Moia C, Roi GS, Susta D, Ferretti G. Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol 2002; 93: 1039-1046
  • 35 Morin J, Tomazin K, Edouard P, Millet G. Changes in running mechanics and spring–mass behavior induced by a mountain ultra-marathon race. J Biomech 2011; 44: 1104-1107
  • 36 Mounier R, Pialoux V, Mischler I, Coudert J, Fellmann N. Effect of hypervolemia on heart rate during 4 days of prolonged exercises. Int J Sports Med 2003; 24: 523-529
  • 37 Rønnestad BR, Mujika I. Optimizing strength training for running and cycling endurance performance: A review. Scand J Med Sci Sports 2014; 24: 603-612
  • 38 Rubenson J, Heliams DB, Lloyd DG, Fournier PA. Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase. Proc Biol Sci 2004; 271: 1091-1099
  • 39 Saugy J, Place N, Millet GY, Degache F, Schena F, Millet GP. Alterations of neuromuscular function after the world's most challenging mountain ultra-marathon. PLoS One 2013; 8: e65596
  • 40 Temesi J, Arnal PJ, Rupp T, Féasson L, Cartier R, Gergelé L, Verges S, Martin V, Millet GY. Are females more resistant to extreme neuromuscular fatigue?. Med Sci Sports Exerc 2015; 47: 1372-1382
  • 41 Vernillo G, Giandolini M, Edwards WB, Morin J-B, Samozino P, Horvais N, Millet GY. Biomechanics and physiology of uphill and downhill running. Sports Med 2016; 47: 615-629
  • 42 Vernillo G, Savoldelli A, Skafidas S, Zignoli A, La Torre A, Pellegrini B, Giardini G, Trabucchi P, Millet GP, Schena F. An extreme mountain ultra-marathon decreases the cost of uphill walking and running. Front Physiol 2016; 7: 530
  • 43 Vernillo G, Savoldelli A, Zignoli A, Skafidas S, Fornasiero A, La Torre A, Bortolan L, Pellegrini B, Schena F. Energy cost and kinematics of level, uphill and downhill running: Fatigue-induced changes after a mountain ultramarathon. J Sports Sci 2015; 33: 1998-2005
  • 44 Vernillo G, Savoldelli A, Zignoli A, Trabucchi P, Pellegrini B, Millet GP, Schena F. Influence of the world’s most challenging mountain ultra-marathon on energy cost and running mechanics. Eur J Appl Physiol 2014; 114: 929-939
  • 45 Voloshina AS, Ferris DP. Biomechanics and energetics of running on uneven terrain. J Exp Biol 2015; 218: 711-719
  • 46 Yokozawa T, Fujii N, Ae M. Muscle activities of the lower limb during level and uphill running. J Biomech 2007; 40: 3467-3475
  • 47 Zamparo P, Perini R, Orizio C, Sacher M, Ferretti G. The energy cost of walking or running on sand. Eur J Appl Physiol 1992; 65: 183-187