CC BY 4.0 · Int Arch Otorhinolaryngol 2024; 28(01): e134-e140
DOI: 10.1055/s-0042-1759747
Original Research

Changes in Auditory Evoked Potentials Increase the Chances of Adults Having Central Auditory Processing Disorder

1   Postgraduate Program (Doctorate) in Health Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
,
2   Department of Clinical Audiology, Center for Advanced Electrophysiology and Neuroaudiology (CENA), Israeli Institute of Education and Research Albert Einstein, São Paulo, SP, Brazil.
,
3   Department of Clinical Surgery, Londrina State University (UEL) and Pontifical Catholic University of Paraná, Londrina, PR, Brazil
› Author Affiliations
Funding This article received a doctoral scholarship from CAPES (Coordination for the Improvement of Higher Education Personnel)

Abstract

Introduction Auditory evoked potentials are widely used in clinical practice to complement the assessment of central auditory processing. However, it is necessary to understand whether these potentials are highly accurate, to assist in the diagnosis of auditory processing disorder.

Objective To measure the accuracy of middle and long latency auditory evoked potentials in the diagnosis of auditory processing disorder in adults.

Methods This is a case-control study, formed by a control group of 30 individuals with normal auditory processing assessment, and a case group composed of 43 individuals with altered auditory processing assessment. Their sensitivities, specificities, accuracies, positive and negative predictive values for the diagnosis of alterations were measured and compared between the potentials.

Results The accuracies of the middle and long latency potentials were 51% and 67%, respectively. The P1-N1-P2 and N2-P300 complexes had an accuracy of 57.5% and 58.9%, respectively. The cognitive potential P300 showed an accuracy of 55%. There was no significant result for the middle-latency potential (OR = 1.8; 95% CI: 0.6–5.4, p > 0.42) and for P300 (OR = 2.63, 95% CI: 0.85–8.43, p > 0.11). However, the result was significant for the long-latency potential (OR = 6.3; 95% CI: 2–19.6, p < 0.01). There was a significant result for the P1-N1-P2 complexes (OR = 6.76, 95% CI:1.4–32.5, p = < 0.010) and N2-P300 (OR = 3.60; 95% CI: 10.16–11.20, p < 0.039).

Conclusion Individuals with altered long-latency auditory evoked potential are more likely to have auditory processing disorder and, as such, this test can be used as a complementary tool to confirm the diagnosis.

Supplementary Material



Publication History

Received: 08 August 2022

Accepted: 09 October 2022

Article published online:
06 October 2023

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Vilela N. Indicators for auditory processing disorder in preschoolers. São Paulo. Thesis - Faculty of Medicine of the University of São Paulo; 2016
  • 2 Sanguebuche TR, Peixe BP, Garcia MV. Behavioral tests in adults: reference values and comparison between groups with and without central auditory processing disorder. Rev CEFAC 2020; 22 (01) e13718 DOI: 10.1590/1982-0216/202022113718.
  • 3 American Speech-Language-Hearing Association. (2005). (Central) auditory processing disorders the role of the audiologist [Position Statement]. Access in: https://www.asha.org/PRPSpecificTopic.aspx?folderid=8589943561&section=Overview
  • 4 Frota S, Pereira LD. Auditory processing: study in children with reading and writing disorders. Rev Psicopedag 2010; 27 (83) 214-222
  • 5 Bellis TJ. Assessment and management of central auditory processing disorders in the educational setting: From science to practice. Clifton Park, NY: Delmar Learning; 2003
  • 6 Pereira LD, Frota S. Auditory Processing Assessment: Behavioral Tests. In: Boéchat EM et al. (orgs). Textbook of Audiology Rio de Janeiro: Guanabara Koogan; 2015
  • 7 Matas CG, Magliaro FCL. Brainstem auditory evoked potential. In: Boéchat E.M., et al. (orgs). Textbook of Audiology Rio de Janeiro: Guanabara Koogan; 2015
  • 8 Hall J. Auditory Brainstem Response: Acquisition Parameters and Test Protocols. In: Hall, J. Handbook of Auditory Evoked Responses: Principles, Procedures & Protocols. Pearson Education, 2015
  • 9 Geisler CD, Frishkopf LS, Rosenblith WA. Extracranial responses to acoustic clicks in man. Science 1958; 128 (3333): 1210-1211 DOI: 10.1126/science.128.3333.1210.
  • 10 Schochat E. (2015). Middle Latency Auditory Evoked Potential. In: In: Boéchat EM et al. (orgs). Textbook of Audiology Rio de Janeiro: Guanabara Koogan; 2015
  • 11 Mendonça EBS, Muniz LF, Leal MdeC, Diniz AdaS. Applicability of the P300 frequency pattern test to assess auditory processing. Rev Bras Otorrinolaringol (Engl Ed) 2013; 79 (04) 512-521 DOI: 10.5935/1808-8694.20130091.
  • 12 Reis ACMB, Frizzo ACF. Cognitive Auditory Evoked Potential. In: Boéchat EM et al. org. Textbook of Audiology. Rio de Janeiro: Guanabara Koogan; 2015
  • 13 Nascimento MSR, Soares-Mendonça EB, Leal MC, Muniz LF, Diniz AS. Long latency auditory evoked potential (P300) in adolescents. Commun Disturb 2017; 29 (02) 309-317 DOI: 10.23925/2176-2724.2017v29i2p309-317.
  • 14 Wiemes GRM, Kozlowski L, Mocellin M, Hamerschmidt R, Schuch LH. Potencial evocado cognitivo e desordem de processamento auditivo em crianças com distúrbios de leitura e escrita. Rev Bras Otorrinolaringol (Engl Ed) 2012; 78 (03) 91-97 DOI: 10.1590/S1808-86942012000300016.
  • 15 Medeiros GM, Silva DPC, Pinheiro MMC. Study of auditory evoked potential P300 before and after acoustically controlled auditory training. Research. Soc Dev 2020; 9 (10) e449108102 DOI: 10.33448/rsd-v9i10.8102.
  • 16 Bez ACMR, Luiz CBL, Paes SM, Azevedo RR, Gil D. Electrophysiological and Behavioral Evaluation of Auditory Processing in Adults with Dysphonia. Int Arch Otorhinolaryngol 2021; 25 (03) e349-e354 DOI: 10.1055/s-0040-1710303.
  • 17 Santos TS, Mancini PC, Sancio LP, Castro AR, Labanca L, Resende LM. Findings in behavioral and electrophysiological assessment of auditory processing. Audiol Commun Res 2015; 20 (03) 225-232 DOI: 10.1590/2317-6431-2015-1589.
  • 18 Mattsson TS, Lind O, Follestad T. et al. Electrophysiological characteristics in children with listening difficulties, with or without auditory processing disorder. Int J Audiol 2019; 58 (11) 704-716 DOI: 10.1080/14992027.2019.1621396.
  • 19 Silveira DP, Artmann E. Accuracy in probabilistic relationship methods of health databases: systematic review. Public Health J 2009; 43 (05) 875-882 DOI: 10.1590/S0034-89102009005000060.
  • 20 World Health Organization (WHO). (2014). Geneva: WHO. Available at: http://www.who.int/deafness/hearing_impairment_grades/en/
  • 21 Jerger J. Clinical experience with impedance audiometry. Arch Otolaryngol 1970; 92 (04) 311-324
  • 22 Pen M, Mangabeira-Albenaz PL. Development of a test for speech discrimination logoaudiometry. In: Pan American Congress on Otorhinolaryngology and Broncoesophage. Peru, 223–26, Annals, 1973
  • 23 Pereira LD, Schochat E. Central auditory processing: evaluation manual. São Paulo: Lovise; 1997
  • 24 Pereira LD, Schochat E. Behavioral hearing tests to assess central auditory processing. Barueri: Pro-phono; 2011
  • 25 Auditec. Evaluation manual of pitch pattern sequence and duration pattern sequence. St. Louis: Auditec; 1997
  • 26 AAA - American Academy of Audiology. Clinical practice guidelines: Diagnosis, treatment and management of children and adults with central auditory processing disorder. 2010 Access in: http://www.audiology.org/resources
  • 27 Mendes SC, Branco-Barreiro FCA, Frota S. Masking level difference: reference values in adults. Audiol Commun Res 2017; 22: e1746 DOI: 10.1590/2317-6431-2016-1746.
  • 28 Hall JW. Auditory Middle Latency Response (AMLR). In: Hall, J. Handbook of Auditory Evoked Responses: Principles, Procedures & Protocols. Pearson Education, 2015
  • 29 Frizzo ACF. Middle Latency Auditory Evoked Potential: technical parameters. In: Menezes PL, Andrade KCL, Frizzo ACF, Carnaúba ATL, Lins OG. (Orgs). Electrophysiology Treaty for Audiology. Ribeirão Preto: Book Toy; 2018
  • 30 McPherson DL. Late Potentials of the auditory system. San Diego: Singular Publishing Group; 1996
  • 31 Hall JW. Auditory Late Responses (ALRs). In: Hall, J. Handbook of Auditory Evoked Responses: Principles, Procedures & Protocols. Pearson Education, 2015
  • 32 Schochat E, Andrade NA, Takeyama FC, Oliveira JC, Sanches SGG. Auditory processing: comparision between auditory middle latency response and temporal pattern tests. Rev CEFAC 2009; 11 (02) DOI: 10.1590/S1516-18462009000200017. [online]
  • 33 Schochat E, Musiek FE, Alonso R, Ogata J. Effect of auditory training on the middle latency response in children with (central) auditory processing disorder. Braz J Med Biol Res 2010; 43 (08) 777-785 DOI: 10.1590/S0100-879X2010007500069.
  • 34 Schochat E, Rabelo CM, Loreti RCA. Sensitivity and specificity of middle latency potential. Rev Bras Otorrinolaringol (Engl Ed) 2004; 70 (03) 353-358 DOI: 10.1590/S0034-72992004000300011.
  • 35 Kumar K, Bhat J, Varghese A. Auditory Late Latency Response in Individuals with Type 2 Diabetes Mellitus. J Int Adv Otol 2018; 14 (03) 408-411 DOI: 10.5152/iao.2018.3201.
  • 36 Oliveira MFF, Menezes PL, Carnaúba ATL. et al. Cognitive performance and long-latency auditory evoked potentials: a study on aging. Clinics (São Paulo) 2021; 76: e1567
  • 37 Prestes R, de Andrade AN, Santos RB, Marangoni AT, Schiefer AM, Gil D. Temporal processing and long-latency auditory evoked potential in stutterers. Rev Bras Otorrinolaringol (Engl Ed) 2017; 83 (02) 142-146 DOI: 10.1016/j.bjorl.2016.02.015.
  • 38 Koravand A, Jutras B, Lassonde M. Abnormalities in cortical auditory responses in children with central auditory processing disorder. Neuroscience 2017; 346: 135-148 DOI: 10.1016/j.neuroscience.2017.01.011.
  • 39 Bellis TJ, Bellis JD. Central auditory processing disorders in children and adults. Handb Clin Neurol 2015; 129: 537-556 DOI: 10.1016/B978-0-444-62630-1.00030-5.
  • 40 Włodarczyk E, Szkiełkowska A, Pilka A, Skarżyński H. Assessment of cortical auditory evoked potentials in children with specific language impairment. Otolaryngol Pol. 2018;72(1):16–22. https://doi:110.5604/01.3001.0011.5933
  • 41 Ferreira L, de Simoni SN, Souza AEH, Bertuol B, Keske-Soares M, Biaggio EPV. Cognitive Auditory Evoked Potential in children with speech sound disorder. RSD. 2020; 9(2):e179921982. Available from: https://rsdjournal.org/index.php/rsd/article/view/1982
  • 42 Berticelli AZ, Bueno CD, Rocha VO, Ranzan J, Riesgo RDS, Sleifer P. Central auditory processing: behavioral and electrophysiological assessment of children and adolescents diagnosed with stroke. Rev Bras Otorrinolaringol (Engl Ed) 2021; 87 (05) 512-520 DOI: 10.1016/j.bjorl.2019.10.010.
  • 43 Magimairaj BM, Nagaraj NK. Working Memory and Auditory Processing in School-Age Children. Lang Speech Hear Serv Sch 2018; 49 (03) 409-423 DOI: 10.1044/2018_LSHSS-17-0099.
  • 44 Carvalho NG, Ubiali T, Amaral MIRD, Colella-Santos MF. Procedures for central auditory processing screening in schoolchildren. Rev Bras Otorrinolaringol (Engl Ed) 2019; 85 (03) 319-328 DOI: 10.1016/j.bjorl.2018.02.004.
  • 45 Cunha P, Silva IMC, Neiva ER, Tristão RM. Auditory processing disorder evaluations and cognitive profiles of children with specific learning disorder. Clin Neurophysiol Pract 2019; 4 (04) 119-127 DOI: 10.1016/j.cnp.2019.05.001.
  • 46 Ocak E, Eshraghi RS, Danesh A, Mittal R, Eshraghi AA. Central Auditory Processing Disorders in Individuals with Autism Spectrum Disorders. Balkan Med J 2018; 35 (05) 367-372 DOI: 10.4274/balkanmedj.2018.0853.
  • 47 Fostick L, Revah H. Dyslexia as a multi-deficit disorder: Working memory and auditory temporal processing. Acta Psychol (Amst) 2018; 183: 19-28 DOI: 10.1016/j.actpsy.2017.12.010.
  • 48 Silva LS, Regaçone SF, Oliveira ACS, Oliveira LS, Fernandes FT, Frizzo ACF. Auditory cortical potential: using different types of speech stimuli in children Audiology. Communic Res 2017; 22: e1788 DOI: 10.1590/2317-6431-2016-178.